Properties

Label 4-304e2-1.1-c1e2-0-1
Degree $4$
Conductor $92416$
Sign $1$
Analytic cond. $5.89252$
Root an. cond. $1.55802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5·9-s − 4·11-s − 2·17-s + 3·19-s + 7·25-s + 8·27-s + 4·33-s − 7·41-s + 14·43-s + 2·49-s + 2·51-s − 3·57-s + 15·59-s − 11·67-s + 5·73-s − 7·75-s + 16·81-s + 20·83-s − 2·89-s − 3·97-s + 20·99-s + 8·107-s − 18·113-s − 121-s + 7·123-s + 127-s + ⋯
L(s)  = 1  − 0.577·3-s − 5/3·9-s − 1.20·11-s − 0.485·17-s + 0.688·19-s + 7/5·25-s + 1.53·27-s + 0.696·33-s − 1.09·41-s + 2.13·43-s + 2/7·49-s + 0.280·51-s − 0.397·57-s + 1.95·59-s − 1.34·67-s + 0.585·73-s − 0.808·75-s + 16/9·81-s + 2.19·83-s − 0.211·89-s − 0.304·97-s + 2.01·99-s + 0.773·107-s − 1.69·113-s − 0.0909·121-s + 0.631·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(92416\)    =    \(2^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(5.89252\)
Root analytic conductor: \(1.55802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 92416,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8055363314\)
\(L(\frac12)\) \(\approx\) \(0.8055363314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_2$ \( 1 - 3 T + p T^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 33 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 31 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 81 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.558709272250738992173006971811, −9.046383277373142321853139360712, −8.694719447393738253918907135213, −8.127201261063222541670774482551, −7.75648920741435578347708780463, −6.99921860100790183663404446564, −6.59640418660595263690952231083, −5.83814127085546798479647792200, −5.50850356832916144606549354788, −5.07568894966195682621075966028, −4.46944353210962084762932503895, −3.44915282788138295445702095334, −2.84442635821892529867766931686, −2.31045579022302946179511932620, −0.67150016823747281771560140700, 0.67150016823747281771560140700, 2.31045579022302946179511932620, 2.84442635821892529867766931686, 3.44915282788138295445702095334, 4.46944353210962084762932503895, 5.07568894966195682621075966028, 5.50850356832916144606549354788, 5.83814127085546798479647792200, 6.59640418660595263690952231083, 6.99921860100790183663404446564, 7.75648920741435578347708780463, 8.127201261063222541670774482551, 8.694719447393738253918907135213, 9.046383277373142321853139360712, 9.558709272250738992173006971811

Graph of the $Z$-function along the critical line