Properties

Label 4-3042e2-1.1-c1e2-0-0
Degree $4$
Conductor $9253764$
Sign $1$
Analytic cond. $590.028$
Root an. cond. $4.92853$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 16-s − 6·17-s − 12·23-s + 25-s − 6·29-s + 20·43-s + 10·49-s − 6·53-s − 14·61-s − 64-s + 6·68-s − 8·79-s + 12·92-s − 100-s + 30·101-s − 28·103-s + 12·107-s + 6·113-s + 6·116-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s + 1/4·16-s − 1.45·17-s − 2.50·23-s + 1/5·25-s − 1.11·29-s + 3.04·43-s + 10/7·49-s − 0.824·53-s − 1.79·61-s − 1/8·64-s + 0.727·68-s − 0.900·79-s + 1.25·92-s − 0.0999·100-s + 2.98·101-s − 2.75·103-s + 1.16·107-s + 0.564·113-s + 0.557·116-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9253764 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9253764 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9253764\)    =    \(2^{2} \cdot 3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(590.028\)
Root analytic conductor: \(4.92853\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9253764,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7293240144\)
\(L(\frac12)\) \(\approx\) \(0.7293240144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
13 \( 1 \)
good5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.994131226139116208460147131087, −8.775347656742341972043894041688, −7.947305135300674233312556026942, −7.77396774518425991021370591890, −7.68638894058128807497550973040, −6.93129654183147120621234193936, −6.75969561148304226372221558972, −5.97086564337813197198563685615, −5.95286256421286728361577274680, −5.67199493111076621280458218394, −4.98881721024624112984027305687, −4.42244291550634203537230401192, −4.28109814095154246856433026863, −3.94817747707020312286286318964, −3.40574834170989541419037801669, −2.78703387214238670327121021428, −2.18425003754090017384578551295, −1.99678281305320550289416070561, −1.15507579099097851913742935470, −0.28375944327736613717004271617, 0.28375944327736613717004271617, 1.15507579099097851913742935470, 1.99678281305320550289416070561, 2.18425003754090017384578551295, 2.78703387214238670327121021428, 3.40574834170989541419037801669, 3.94817747707020312286286318964, 4.28109814095154246856433026863, 4.42244291550634203537230401192, 4.98881721024624112984027305687, 5.67199493111076621280458218394, 5.95286256421286728361577274680, 5.97086564337813197198563685615, 6.75969561148304226372221558972, 6.93129654183147120621234193936, 7.68638894058128807497550973040, 7.77396774518425991021370591890, 7.947305135300674233312556026942, 8.775347656742341972043894041688, 8.994131226139116208460147131087

Graph of the $Z$-function along the critical line