Properties

Label 4-3040e2-1.1-c0e2-0-1
Degree $4$
Conductor $9241600$
Sign $1$
Analytic cond. $2.30176$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 9-s + 2·11-s + 2·13-s + 19-s + 23-s − 2·35-s + 2·37-s + 41-s − 45-s − 2·47-s + 49-s − 53-s + 2·55-s + 2·59-s + 2·63-s + 2·65-s − 4·77-s + 89-s − 4·91-s + 95-s − 2·99-s − 2·103-s + 115-s − 2·117-s + 121-s + ⋯
L(s)  = 1  + 5-s − 2·7-s − 9-s + 2·11-s + 2·13-s + 19-s + 23-s − 2·35-s + 2·37-s + 41-s − 45-s − 2·47-s + 49-s − 53-s + 2·55-s + 2·59-s + 2·63-s + 2·65-s − 4·77-s + 89-s − 4·91-s + 95-s − 2·99-s − 2·103-s + 115-s − 2·117-s + 121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9241600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9241600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9241600\)    =    \(2^{10} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.30176\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9241600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.683173454\)
\(L(\frac12)\) \(\approx\) \(1.683173454\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 - T + T^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 + T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.085091548687465994327044850140, −9.000732084135495242370467687617, −8.377116103663000337426178673480, −8.142584297363673569685049422218, −7.58042657672888258654992696404, −6.93721810886196574099493167579, −6.56065178387043791894861137201, −6.49728019716131598792827613114, −6.07407167079660713860752937162, −5.91933392737660480258898665736, −5.45966493862891719914594698633, −4.96400710779247508866763562378, −4.17343833389616459285210140999, −3.92775369384416416270841555023, −3.41712815029325000519048335661, −3.09414581716443576160011863329, −2.83135266384425356451791987173, −2.02194835953953711447701553187, −1.29828814189414780789059437273, −0.937359203617292703491779511416, 0.937359203617292703491779511416, 1.29828814189414780789059437273, 2.02194835953953711447701553187, 2.83135266384425356451791987173, 3.09414581716443576160011863329, 3.41712815029325000519048335661, 3.92775369384416416270841555023, 4.17343833389616459285210140999, 4.96400710779247508866763562378, 5.45966493862891719914594698633, 5.91933392737660480258898665736, 6.07407167079660713860752937162, 6.49728019716131598792827613114, 6.56065178387043791894861137201, 6.93721810886196574099493167579, 7.58042657672888258654992696404, 8.142584297363673569685049422218, 8.377116103663000337426178673480, 9.000732084135495242370467687617, 9.085091548687465994327044850140

Graph of the $Z$-function along the critical line