Properties

Label 4-3040e2-1.1-c0e2-0-0
Degree $4$
Conductor $9241600$
Sign $1$
Analytic cond. $2.30176$
Root an. cond. $1.23172$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s − 9-s + 2·11-s − 2·13-s + 19-s − 23-s − 2·35-s − 2·37-s + 41-s + 45-s + 2·47-s + 49-s + 53-s − 2·55-s + 2·59-s − 2·63-s + 2·65-s + 4·77-s + 89-s − 4·91-s − 95-s − 2·99-s + 2·103-s + 115-s + 2·117-s + 121-s + ⋯
L(s)  = 1  − 5-s + 2·7-s − 9-s + 2·11-s − 2·13-s + 19-s − 23-s − 2·35-s − 2·37-s + 41-s + 45-s + 2·47-s + 49-s + 53-s − 2·55-s + 2·59-s − 2·63-s + 2·65-s + 4·77-s + 89-s − 4·91-s − 95-s − 2·99-s + 2·103-s + 115-s + 2·117-s + 121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9241600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9241600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9241600\)    =    \(2^{10} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.30176\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 9241600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.314099306\)
\(L(\frac12)\) \(\approx\) \(1.314099306\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
19$C_2$ \( 1 - T + T^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 - T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.886269989091098314224352124940, −8.719707224417906527857920457540, −8.314671073311699696086634380387, −7.965064455222957655769838325575, −7.55062751389045490258270488112, −7.36760313654601233156382907999, −6.97852297093724148939125358379, −6.61962447106984075551930490720, −5.78837685987911999117401301561, −5.73887332879638268222262183474, −5.06798101386282369704926604996, −4.93924852574024289387332294438, −4.38003906219632290771811946169, −4.00222382936215213990925273132, −3.71668784814152797422293806826, −3.14876284602560299187250097473, −2.37953556364473894614404126086, −2.11394386211900300612107285870, −1.48731107266169626390219365833, −0.74695730338733601657553426168, 0.74695730338733601657553426168, 1.48731107266169626390219365833, 2.11394386211900300612107285870, 2.37953556364473894614404126086, 3.14876284602560299187250097473, 3.71668784814152797422293806826, 4.00222382936215213990925273132, 4.38003906219632290771811946169, 4.93924852574024289387332294438, 5.06798101386282369704926604996, 5.73887332879638268222262183474, 5.78837685987911999117401301561, 6.61962447106984075551930490720, 6.97852297093724148939125358379, 7.36760313654601233156382907999, 7.55062751389045490258270488112, 7.965064455222957655769838325575, 8.314671073311699696086634380387, 8.719707224417906527857920457540, 8.886269989091098314224352124940

Graph of the $Z$-function along the critical line