Properties

Label 4-300e2-1.1-c2e2-0-1
Degree $4$
Conductor $90000$
Sign $1$
Analytic cond. $66.8209$
Root an. cond. $2.85909$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8·8-s − 3·9-s − 36·13-s − 16·16-s − 20·17-s + 6·18-s + 72·26-s − 72·29-s + 40·34-s − 108·37-s + 36·41-s − 10·49-s + 52·53-s + 144·58-s − 148·61-s + 64·64-s − 24·72-s − 72·73-s + 216·74-s + 9·81-s − 72·82-s − 36·89-s + 144·97-s + 20·98-s + 72·101-s − 288·104-s + ⋯
L(s)  = 1  − 2-s + 8-s − 1/3·9-s − 2.76·13-s − 16-s − 1.17·17-s + 1/3·18-s + 2.76·26-s − 2.48·29-s + 1.17·34-s − 2.91·37-s + 0.878·41-s − 0.204·49-s + 0.981·53-s + 2.48·58-s − 2.42·61-s + 64-s − 1/3·72-s − 0.986·73-s + 2.91·74-s + 1/9·81-s − 0.878·82-s − 0.404·89-s + 1.48·97-s + 0.204·98-s + 0.712·101-s − 2.76·104-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 90000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(90000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(66.8209\)
Root analytic conductor: \(2.85909\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{300} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 90000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.06646645294\)
\(L(\frac12)\) \(\approx\) \(0.06646645294\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
3$C_2$ \( 1 + p T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 10 T^{2} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 134 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 530 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 1010 T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 + 36 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 1874 T^{2} + p^{4} T^{4} \)
37$C_2$ \( ( 1 + 54 T + p^{2} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 18 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 3266 T^{2} + p^{4} T^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 5990 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 74 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 7250 T^{2} + p^{4} T^{4} \)
71$C_2^2$ \( 1 + 718 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 36 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 4370 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 5666 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 72 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.72429673964229557739502510917, −11.06376711814805310732006231697, −10.80710478036473586456040153738, −10.09185794547804343869662734831, −9.980581394797945192426020422154, −9.213108005316086273549493426270, −9.072219470261761938792900348160, −8.656553752597218956392654517954, −7.82785979419370007578315821363, −7.33460874336195055286292858831, −7.31671929543418819386007785095, −6.61374692596465437640800157920, −5.69216959740118423685144140718, −5.16896390001098559225606585091, −4.70404675669253915819287229197, −4.11457676600014421097156261695, −3.20425610024626276518315656139, −2.24099581445103317043046238246, −1.82788240727114936257363018312, −0.14076020360650360919204248652, 0.14076020360650360919204248652, 1.82788240727114936257363018312, 2.24099581445103317043046238246, 3.20425610024626276518315656139, 4.11457676600014421097156261695, 4.70404675669253915819287229197, 5.16896390001098559225606585091, 5.69216959740118423685144140718, 6.61374692596465437640800157920, 7.31671929543418819386007785095, 7.33460874336195055286292858831, 7.82785979419370007578315821363, 8.656553752597218956392654517954, 9.072219470261761938792900348160, 9.213108005316086273549493426270, 9.980581394797945192426020422154, 10.09185794547804343869662734831, 10.80710478036473586456040153738, 11.06376711814805310732006231697, 11.72429673964229557739502510917

Graph of the $Z$-function along the critical line