Properties

Label 4-2e8-1.1-c37e2-0-1
Degree $4$
Conductor $256$
Sign $1$
Analytic cond. $19249.4$
Root an. cond. $11.7788$
Motivic weight $37$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.39e7·3-s + 5.52e12·5-s + 3.44e15·7-s − 8.99e17·9-s + 2.67e19·11-s + 5.30e20·13-s − 7.73e19·15-s − 8.94e22·17-s − 3.73e23·19-s − 4.82e22·21-s + 2.62e25·23-s − 2.20e23·25-s + 1.88e25·27-s − 1.27e27·29-s − 2.61e26·31-s − 3.74e26·33-s + 1.90e28·35-s − 6.80e28·37-s − 7.42e27·39-s − 1.26e30·41-s + 2.57e30·43-s − 4.97e30·45-s − 4.25e30·47-s − 1.45e31·49-s + 1.25e30·51-s + 1.59e32·53-s + 1.47e32·55-s + ⋯
L(s)  = 1  − 0.0208·3-s + 0.648·5-s + 0.800·7-s − 1.99·9-s + 1.44·11-s + 1.30·13-s − 0.0135·15-s − 1.54·17-s − 0.822·19-s − 0.0166·21-s + 1.68·23-s − 0.00302·25-s + 0.0624·27-s − 1.12·29-s − 0.0671·31-s − 0.0302·33-s + 0.518·35-s − 0.662·37-s − 0.0272·39-s − 1.83·41-s + 1.55·43-s − 1.29·45-s − 0.495·47-s − 0.782·49-s + 0.0321·51-s + 2.01·53-s + 0.939·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(38-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+37/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(19249.4\)
Root analytic conductor: \(11.7788\)
Motivic weight: \(37\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 256,\ (\ :37/2, 37/2),\ 1)\)

Particular Values

\(L(19)\) \(\approx\) \(3.744803325\)
\(L(\frac12)\) \(\approx\) \(3.744803325\)
\(L(\frac{39}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( 1 + 518200 p^{3} T + 15239131479430 p^{10} T^{2} + 518200 p^{40} T^{3} + p^{74} T^{4} \)
5$D_{4}$ \( 1 - 221183375436 p^{2} T + \)\(39\!\cdots\!58\)\( p^{7} T^{2} - 221183375436 p^{39} T^{3} + p^{74} T^{4} \)
7$D_{4}$ \( 1 - 70376407214000 p^{2} T + \)\(15\!\cdots\!50\)\( p^{5} T^{2} - 70376407214000 p^{39} T^{3} + p^{74} T^{4} \)
11$D_{4}$ \( 1 - 2430366941349867096 p T + \)\(53\!\cdots\!46\)\( p^{3} T^{2} - 2430366941349867096 p^{38} T^{3} + p^{74} T^{4} \)
13$D_{4}$ \( 1 - 40813980127225629100 p T + \)\(14\!\cdots\!70\)\( p^{3} T^{2} - 40813980127225629100 p^{38} T^{3} + p^{74} T^{4} \)
17$D_{4}$ \( 1 + \)\(52\!\cdots\!00\)\( p T + \)\(17\!\cdots\!10\)\( p^{3} T^{2} + \)\(52\!\cdots\!00\)\( p^{38} T^{3} + p^{74} T^{4} \)
19$D_{4}$ \( 1 + \)\(37\!\cdots\!20\)\( T + \)\(10\!\cdots\!62\)\( p T^{2} + \)\(37\!\cdots\!20\)\( p^{37} T^{3} + p^{74} T^{4} \)
23$D_{4}$ \( 1 - \)\(26\!\cdots\!00\)\( T + \)\(21\!\cdots\!70\)\( p T^{2} - \)\(26\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
29$D_{4}$ \( 1 + \)\(43\!\cdots\!80\)\( p T + \)\(26\!\cdots\!98\)\( p^{2} T^{2} + \)\(43\!\cdots\!80\)\( p^{38} T^{3} + p^{74} T^{4} \)
31$D_{4}$ \( 1 + \)\(84\!\cdots\!04\)\( p T + \)\(25\!\cdots\!06\)\( p^{2} T^{2} + \)\(84\!\cdots\!04\)\( p^{38} T^{3} + p^{74} T^{4} \)
37$D_{4}$ \( 1 + \)\(49\!\cdots\!00\)\( p^{2} T + \)\(13\!\cdots\!90\)\( T^{2} + \)\(49\!\cdots\!00\)\( p^{39} T^{3} + p^{74} T^{4} \)
41$D_{4}$ \( 1 + \)\(12\!\cdots\!36\)\( T + \)\(12\!\cdots\!86\)\( T^{2} + \)\(12\!\cdots\!36\)\( p^{37} T^{3} + p^{74} T^{4} \)
43$D_{4}$ \( 1 - \)\(25\!\cdots\!00\)\( T + \)\(44\!\cdots\!50\)\( T^{2} - \)\(25\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
47$D_{4}$ \( 1 + \)\(42\!\cdots\!00\)\( T + \)\(14\!\cdots\!70\)\( T^{2} + \)\(42\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
53$D_{4}$ \( 1 - \)\(15\!\cdots\!00\)\( T + \)\(16\!\cdots\!70\)\( T^{2} - \)\(15\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
59$D_{4}$ \( 1 - \)\(23\!\cdots\!40\)\( T + \)\(64\!\cdots\!38\)\( T^{2} - \)\(23\!\cdots\!40\)\( p^{37} T^{3} + p^{74} T^{4} \)
61$D_{4}$ \( 1 - \)\(10\!\cdots\!44\)\( T + \)\(10\!\cdots\!26\)\( T^{2} - \)\(10\!\cdots\!44\)\( p^{37} T^{3} + p^{74} T^{4} \)
67$D_{4}$ \( 1 - \)\(10\!\cdots\!00\)\( T + \)\(94\!\cdots\!30\)\( T^{2} - \)\(10\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
71$D_{4}$ \( 1 - \)\(74\!\cdots\!16\)\( T + \)\(58\!\cdots\!46\)\( T^{2} - \)\(74\!\cdots\!16\)\( p^{37} T^{3} + p^{74} T^{4} \)
73$D_{4}$ \( 1 - \)\(19\!\cdots\!00\)\( T + \)\(18\!\cdots\!10\)\( T^{2} - \)\(19\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
79$D_{4}$ \( 1 + \)\(27\!\cdots\!80\)\( T + \)\(64\!\cdots\!42\)\( p T^{2} + \)\(27\!\cdots\!80\)\( p^{37} T^{3} + p^{74} T^{4} \)
83$D_{4}$ \( 1 - \)\(47\!\cdots\!00\)\( T + \)\(24\!\cdots\!30\)\( T^{2} - \)\(47\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
89$D_{4}$ \( 1 + \)\(13\!\cdots\!60\)\( T + \)\(23\!\cdots\!58\)\( T^{2} + \)\(13\!\cdots\!60\)\( p^{37} T^{3} + p^{74} T^{4} \)
97$D_{4}$ \( 1 - \)\(60\!\cdots\!00\)\( T + \)\(57\!\cdots\!70\)\( T^{2} - \)\(60\!\cdots\!00\)\( p^{37} T^{3} + p^{74} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.63570038206931187760117896643, −11.61817963187377350838378567945, −10.93548851042354001621649290320, −10.66444627583628319518712175507, −9.320569638082412155012610814067, −9.082530952924149311279851224062, −8.392111776729606655268157506374, −8.381354059317065715614190486156, −6.84304770847050538803454861751, −6.75655037235575088644195409181, −5.87874172726784002714066863420, −5.55352843763540579957358294669, −4.83259897192983661503065920965, −4.07263606092347850393129449613, −3.49906419536323136957132158656, −2.85712715797902631722937602909, −1.92473319049223611386570096839, −1.89017386356784304373828656014, −0.914544740680475232016605877677, −0.44125494373399518763772837622, 0.44125494373399518763772837622, 0.914544740680475232016605877677, 1.89017386356784304373828656014, 1.92473319049223611386570096839, 2.85712715797902631722937602909, 3.49906419536323136957132158656, 4.07263606092347850393129449613, 4.83259897192983661503065920965, 5.55352843763540579957358294669, 5.87874172726784002714066863420, 6.75655037235575088644195409181, 6.84304770847050538803454861751, 8.381354059317065715614190486156, 8.392111776729606655268157506374, 9.082530952924149311279851224062, 9.320569638082412155012610814067, 10.66444627583628319518712175507, 10.93548851042354001621649290320, 11.61817963187377350838378567945, 11.63570038206931187760117896643

Graph of the $Z$-function along the critical line