Properties

Label 4-2e8-1.1-c25e2-0-1
Degree $4$
Conductor $256$
Sign $1$
Analytic cond. $4014.42$
Root an. cond. $7.95986$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.99e5·3-s − 3.99e8·5-s + 4.05e10·7-s − 1.82e10·9-s + 1.30e12·11-s + 3.27e13·13-s − 3.59e14·15-s + 4.62e15·17-s − 2.46e16·19-s + 3.64e16·21-s + 3.10e16·23-s − 2.65e17·25-s + 1.34e15·27-s − 3.32e18·29-s + 6.42e18·31-s + 1.17e18·33-s − 1.61e19·35-s + 3.16e19·37-s + 2.94e19·39-s − 1.63e19·41-s + 3.41e20·43-s + 7.27e18·45-s + 1.11e21·47-s + 7.37e20·49-s + 4.16e21·51-s + 7.61e21·53-s − 5.21e20·55-s + ⋯
L(s)  = 1  + 0.977·3-s − 0.731·5-s + 1.10·7-s − 0.0215·9-s + 0.125·11-s + 0.389·13-s − 0.714·15-s + 1.92·17-s − 2.55·19-s + 1.08·21-s + 0.295·23-s − 0.891·25-s + 0.00172·27-s − 1.74·29-s + 1.46·31-s + 0.122·33-s − 0.809·35-s + 0.791·37-s + 0.380·39-s − 0.112·41-s + 1.30·43-s + 0.0157·45-s + 1.40·47-s + 0.549·49-s + 1.88·51-s + 2.12·53-s − 0.0918·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+25/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(4014.42\)
Root analytic conductor: \(7.95986\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 256,\ (\ :25/2, 25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(4.768220647\)
\(L(\frac12)\) \(\approx\) \(4.768220647\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
good3$D_{4}$ \( 1 - 33320 p^{3} T + 1135214918 p^{6} T^{2} - 33320 p^{28} T^{3} + p^{50} T^{4} \)
5$D_{4}$ \( 1 + 399350196 T + 17004419092170526 p^{2} T^{2} + 399350196 p^{25} T^{3} + p^{50} T^{4} \)
7$D_{4}$ \( 1 - 5788351760 p T + 376748861434354830 p^{4} T^{2} - 5788351760 p^{26} T^{3} + p^{50} T^{4} \)
11$D_{4}$ \( 1 - 1306289379240 T + \)\(16\!\cdots\!62\)\( p^{2} T^{2} - 1306289379240 p^{25} T^{3} + p^{50} T^{4} \)
13$D_{4}$ \( 1 - 32729023492060 T + \)\(10\!\cdots\!14\)\( p T^{2} - 32729023492060 p^{25} T^{3} + p^{50} T^{4} \)
17$D_{4}$ \( 1 - 4624697010380580 T + \)\(88\!\cdots\!94\)\( p T^{2} - 4624697010380580 p^{25} T^{3} + p^{50} T^{4} \)
19$D_{4}$ \( 1 + 1298632725303928 p T + \)\(47\!\cdots\!06\)\( p^{3} T^{2} + 1298632725303928 p^{26} T^{3} + p^{50} T^{4} \)
23$D_{4}$ \( 1 - 1349692516511280 p T + \)\(37\!\cdots\!70\)\( p^{2} T^{2} - 1349692516511280 p^{26} T^{3} + p^{50} T^{4} \)
29$D_{4}$ \( 1 + 3328137384414404868 T + \)\(98\!\cdots\!54\)\( T^{2} + 3328137384414404868 p^{25} T^{3} + p^{50} T^{4} \)
31$D_{4}$ \( 1 - 6421803981270308288 T + \)\(37\!\cdots\!38\)\( T^{2} - 6421803981270308288 p^{25} T^{3} + p^{50} T^{4} \)
37$D_{4}$ \( 1 - 31687565809212923020 T + \)\(14\!\cdots\!50\)\( T^{2} - 31687565809212923020 p^{25} T^{3} + p^{50} T^{4} \)
41$D_{4}$ \( 1 + 16316808963958618668 T + \)\(35\!\cdots\!58\)\( T^{2} + 16316808963958618668 p^{25} T^{3} + p^{50} T^{4} \)
43$D_{4}$ \( 1 - \)\(34\!\cdots\!20\)\( T + \)\(15\!\cdots\!86\)\( T^{2} - \)\(34\!\cdots\!20\)\( p^{25} T^{3} + p^{50} T^{4} \)
47$D_{4}$ \( 1 - \)\(11\!\cdots\!00\)\( T + \)\(14\!\cdots\!98\)\( T^{2} - \)\(11\!\cdots\!00\)\( p^{25} T^{3} + p^{50} T^{4} \)
53$D_{4}$ \( 1 - \)\(76\!\cdots\!20\)\( T + \)\(39\!\cdots\!30\)\( T^{2} - \)\(76\!\cdots\!20\)\( p^{25} T^{3} + p^{50} T^{4} \)
59$D_{4}$ \( 1 - \)\(44\!\cdots\!16\)\( T - \)\(94\!\cdots\!38\)\( T^{2} - \)\(44\!\cdots\!16\)\( p^{25} T^{3} + p^{50} T^{4} \)
61$D_{4}$ \( 1 + \)\(10\!\cdots\!36\)\( T + \)\(86\!\cdots\!26\)\( T^{2} + \)\(10\!\cdots\!36\)\( p^{25} T^{3} + p^{50} T^{4} \)
67$D_{4}$ \( 1 - \)\(27\!\cdots\!80\)\( T + \)\(85\!\cdots\!10\)\( T^{2} - \)\(27\!\cdots\!80\)\( p^{25} T^{3} + p^{50} T^{4} \)
71$D_{4}$ \( 1 - \)\(31\!\cdots\!04\)\( T + \)\(35\!\cdots\!06\)\( T^{2} - \)\(31\!\cdots\!04\)\( p^{25} T^{3} + p^{50} T^{4} \)
73$D_{4}$ \( 1 - \)\(39\!\cdots\!60\)\( T + \)\(10\!\cdots\!62\)\( T^{2} - \)\(39\!\cdots\!60\)\( p^{25} T^{3} + p^{50} T^{4} \)
79$D_{4}$ \( 1 - \)\(11\!\cdots\!04\)\( T + \)\(80\!\cdots\!02\)\( T^{2} - \)\(11\!\cdots\!04\)\( p^{25} T^{3} + p^{50} T^{4} \)
83$D_{4}$ \( 1 - \)\(25\!\cdots\!00\)\( T + \)\(33\!\cdots\!30\)\( T^{2} - \)\(25\!\cdots\!00\)\( p^{25} T^{3} + p^{50} T^{4} \)
89$D_{4}$ \( 1 - \)\(39\!\cdots\!68\)\( T + \)\(14\!\cdots\!54\)\( T^{2} - \)\(39\!\cdots\!68\)\( p^{25} T^{3} + p^{50} T^{4} \)
97$D_{4}$ \( 1 + \)\(82\!\cdots\!40\)\( T + \)\(79\!\cdots\!30\)\( T^{2} + \)\(82\!\cdots\!40\)\( p^{25} T^{3} + p^{50} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.80152269093836801695896176843, −13.31124145399028256112686772845, −12.14048763053446263415875297538, −12.11577773459279919610333981566, −10.88771204240397283423236304718, −10.78117864941364878933052231029, −9.644919492513740894364065042545, −8.938559351388101803554025744300, −8.135187747209364789561911869829, −8.081174718138896845782987673218, −7.36395724376649930299443280559, −6.28169174889196463877527173696, −5.58736078024020582626922649598, −4.68856044500820112157426913614, −3.76136085318798941217036727950, −3.75141192429493631614077681815, −2.35526273028551314834433292814, −2.24150642115672016463226189830, −1.10795310023170851169367664492, −0.56776397141431924432087652530, 0.56776397141431924432087652530, 1.10795310023170851169367664492, 2.24150642115672016463226189830, 2.35526273028551314834433292814, 3.75141192429493631614077681815, 3.76136085318798941217036727950, 4.68856044500820112157426913614, 5.58736078024020582626922649598, 6.28169174889196463877527173696, 7.36395724376649930299443280559, 8.081174718138896845782987673218, 8.135187747209364789561911869829, 8.938559351388101803554025744300, 9.644919492513740894364065042545, 10.78117864941364878933052231029, 10.88771204240397283423236304718, 12.11577773459279919610333981566, 12.14048763053446263415875297538, 13.31124145399028256112686772845, 13.80152269093836801695896176843

Graph of the $Z$-function along the critical line