L(s) = 1 | − 2·9-s − 12·17-s − 10·25-s + 12·41-s − 14·49-s − 4·73-s − 5·81-s − 36·89-s + 20·97-s + 36·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 24·153-s + 157-s + 163-s + 167-s − 26·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 2/3·9-s − 2.91·17-s − 2·25-s + 1.87·41-s − 2·49-s − 0.468·73-s − 5/9·81-s − 3.81·89-s + 2.03·97-s + 3.38·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=(65536s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(65536s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
65536
= 216
|
Sign: |
−1
|
Analytic conductor: |
4.17863 |
Root analytic conductor: |
1.42974 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 65536, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1+pT2)2 |
| 67 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−18T+pT2)(1+18T+pT2) |
| 89 | C2 | (1+18T+pT2)2 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.739977345448053506810012798737, −9.084650424863502138877874475320, −8.559961689771162774439116698021, −8.337928305679105143801605101388, −7.49638267192940041493128754308, −7.14838005963241329022744903293, −6.29051795613585298614624812000, −6.13287781737238367476060833635, −5.43412469058090981748265870176, −4.43148007247498493089277458199, −4.38680180444175422137402538929, −3.38746738060370983088123271545, −2.49619173311123854201331757855, −1.90996633779170653420430529631, 0,
1.90996633779170653420430529631, 2.49619173311123854201331757855, 3.38746738060370983088123271545, 4.38680180444175422137402538929, 4.43148007247498493089277458199, 5.43412469058090981748265870176, 6.13287781737238367476060833635, 6.29051795613585298614624812000, 7.14838005963241329022744903293, 7.49638267192940041493128754308, 8.337928305679105143801605101388, 8.559961689771162774439116698021, 9.084650424863502138877874475320, 9.739977345448053506810012798737