| L(s) = 1 | + 2-s + 4-s + 8-s + 16-s + 2·17-s − 8·19-s − 10·25-s + 32-s + 2·34-s − 8·38-s − 12·41-s − 8·43-s − 10·49-s − 10·50-s + 24·59-s + 64-s − 8·67-s + 2·68-s + 4·73-s − 8·76-s − 12·82-s − 24·83-s − 8·86-s + 36·89-s + 28·97-s − 10·98-s − 10·100-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1/4·16-s + 0.485·17-s − 1.83·19-s − 2·25-s + 0.176·32-s + 0.342·34-s − 1.29·38-s − 1.87·41-s − 1.21·43-s − 1.42·49-s − 1.41·50-s + 3.12·59-s + 1/8·64-s − 0.977·67-s + 0.242·68-s + 0.468·73-s − 0.917·76-s − 1.32·82-s − 2.63·83-s − 0.862·86-s + 3.81·89-s + 2.84·97-s − 1.01·98-s − 100-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2996352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2996352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.352504294\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.352504294\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.72163494500314536146419130346, −6.87066981593946766193241441606, −6.70932306148654350305246926067, −6.37184885190800443680649268709, −5.71857773197573233085611833323, −5.60715979666329449780909401068, −4.91664286403250453650685991692, −4.60759445774375135200288872743, −4.09787601221335414896752430182, −3.49564053345359029034543342720, −3.42809860399723990451499242436, −2.54817671292252675229072912013, −1.85853979707166255531246106964, −1.81193945201237649695550582777, −0.48406584317203841332746775292,
0.48406584317203841332746775292, 1.81193945201237649695550582777, 1.85853979707166255531246106964, 2.54817671292252675229072912013, 3.42809860399723990451499242436, 3.49564053345359029034543342720, 4.09787601221335414896752430182, 4.60759445774375135200288872743, 4.91664286403250453650685991692, 5.60715979666329449780909401068, 5.71857773197573233085611833323, 6.37184885190800443680649268709, 6.70932306148654350305246926067, 6.87066981593946766193241441606, 7.72163494500314536146419130346