Properties

Label 4-2925e2-1.1-c1e2-0-19
Degree $4$
Conductor $8555625$
Sign $1$
Analytic cond. $545.514$
Root an. cond. $4.83282$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·7-s + 2·13-s − 3·16-s − 8·19-s + 2·28-s − 14·31-s + 4·37-s + 4·43-s − 11·49-s − 2·52-s − 2·61-s + 7·64-s + 10·67-s + 4·73-s + 8·76-s − 20·79-s − 4·91-s − 20·97-s − 32·103-s + 16·109-s + 6·112-s − 19·121-s + 14·124-s + 127-s + 131-s + 16·133-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.755·7-s + 0.554·13-s − 3/4·16-s − 1.83·19-s + 0.377·28-s − 2.51·31-s + 0.657·37-s + 0.609·43-s − 1.57·49-s − 0.277·52-s − 0.256·61-s + 7/8·64-s + 1.22·67-s + 0.468·73-s + 0.917·76-s − 2.25·79-s − 0.419·91-s − 2.03·97-s − 3.15·103-s + 1.53·109-s + 0.566·112-s − 1.72·121-s + 1.25·124-s + 0.0887·127-s + 0.0873·131-s + 1.38·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8555625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8555625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8555625\)    =    \(3^{4} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(545.514\)
Root analytic conductor: \(4.83282\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 8555625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13$C_1$ \( ( 1 - T )^{2} \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 79 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 115 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 139 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.463506946328816080226006467074, −8.425122597355889669889994512870, −7.87274237398111474276796275013, −7.40973264161248255291724076224, −7.01944303036983966171437662303, −6.57151926318146579978012351102, −6.40254105925839265405392752314, −5.96108821827762660836277083165, −5.32768022244652613836548836769, −5.30304421165877357464946860657, −4.49856450083760616897925242466, −4.15790188699369437274084851604, −3.93628002859671980269517249471, −3.41484059990193456283649319907, −2.86218928888147774304922075029, −2.34595394598549049714298547004, −1.84840517166957909244928706288, −1.22063776207964357074678035520, 0, 0, 1.22063776207964357074678035520, 1.84840517166957909244928706288, 2.34595394598549049714298547004, 2.86218928888147774304922075029, 3.41484059990193456283649319907, 3.93628002859671980269517249471, 4.15790188699369437274084851604, 4.49856450083760616897925242466, 5.30304421165877357464946860657, 5.32768022244652613836548836769, 5.96108821827762660836277083165, 6.40254105925839265405392752314, 6.57151926318146579978012351102, 7.01944303036983966171437662303, 7.40973264161248255291724076224, 7.87274237398111474276796275013, 8.425122597355889669889994512870, 8.463506946328816080226006467074

Graph of the $Z$-function along the critical line