Properties

Label 4-28e4-1.1-c1e2-0-33
Degree $4$
Conductor $614656$
Sign $1$
Analytic cond. $39.1909$
Root an. cond. $2.50205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 6·5-s + 3·9-s − 6·11-s + 12·15-s + 2·19-s − 6·23-s + 19·25-s + 10·27-s + 12·29-s − 8·31-s − 12·33-s + 2·37-s + 18·45-s − 6·53-s − 36·55-s + 4·57-s + 6·59-s − 6·61-s − 6·67-s − 12·69-s + 12·73-s + 38·75-s + 6·79-s + 20·81-s + 12·83-s + 24·87-s + ⋯
L(s)  = 1  + 1.15·3-s + 2.68·5-s + 9-s − 1.80·11-s + 3.09·15-s + 0.458·19-s − 1.25·23-s + 19/5·25-s + 1.92·27-s + 2.22·29-s − 1.43·31-s − 2.08·33-s + 0.328·37-s + 2.68·45-s − 0.824·53-s − 4.85·55-s + 0.529·57-s + 0.781·59-s − 0.768·61-s − 0.733·67-s − 1.44·69-s + 1.40·73-s + 4.38·75-s + 0.675·79-s + 20/9·81-s + 1.31·83-s + 2.57·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 614656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(614656\)    =    \(2^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(39.1909\)
Root analytic conductor: \(2.50205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 614656,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.963694883\)
\(L(\frac12)\) \(\approx\) \(4.963694883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 6 T + 17 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 6 T + 73 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 12 T + 121 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 6 T + 91 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 12 T + 137 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35790841082252018411878541089, −10.11040732871490540876658443469, −9.590002472144097237106077941810, −9.275721755863283411188510091002, −9.059069206134996321125605381393, −8.295879663483255015463289808722, −8.072087805167689252802864249116, −7.70373802667479973760245446603, −6.93615822123185691673378864227, −6.54334168776319052839973059571, −6.13461265635285938543077954205, −5.63886776221557643105285435924, −5.05804684329085506654964567027, −4.97173540299177572649287045373, −4.12101457259943252118732261643, −3.15159152585006383867867430106, −2.86608744029093119602358986889, −2.16294737197199234163774045176, −2.08224269043742124058466608210, −1.11927073919964896646083367438, 1.11927073919964896646083367438, 2.08224269043742124058466608210, 2.16294737197199234163774045176, 2.86608744029093119602358986889, 3.15159152585006383867867430106, 4.12101457259943252118732261643, 4.97173540299177572649287045373, 5.05804684329085506654964567027, 5.63886776221557643105285435924, 6.13461265635285938543077954205, 6.54334168776319052839973059571, 6.93615822123185691673378864227, 7.70373802667479973760245446603, 8.072087805167689252802864249116, 8.295879663483255015463289808722, 9.059069206134996321125605381393, 9.275721755863283411188510091002, 9.590002472144097237106077941810, 10.11040732871490540876658443469, 10.35790841082252018411878541089

Graph of the $Z$-function along the critical line