Properties

Label 4-288e2-1.1-c1e2-0-2
Degree $4$
Conductor $82944$
Sign $1$
Analytic cond. $5.28858$
Root an. cond. $1.51647$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s + 6·25-s − 4·37-s + 2·49-s + 12·61-s + 12·73-s + 28·97-s − 28·109-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.10·13-s + 6/5·25-s − 0.657·37-s + 2/7·49-s + 1.53·61-s + 1.40·73-s + 2.84·97-s − 2.68·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(82944\)    =    \(2^{10} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(5.28858\)
Root analytic conductor: \(1.51647\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 82944,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.563576199\)
\(L(\frac12)\) \(\approx\) \(1.563576199\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.706493415512552339143206653789, −9.105785492387691411460037633518, −8.726898993899909307287620084311, −8.321497471063270954586668670813, −7.73084422370407835967708773407, −7.16259874971708978058320588378, −6.52924991940456141515104550178, −6.28110316926861404760164348297, −5.38878711423341380944684140453, −5.09801316664331499715467423459, −4.22272834484936131716525105368, −3.67396666486065637441511456548, −3.00972019751601224361048375984, −2.10401434444438292990349194328, −1.03266837882392676801067226470, 1.03266837882392676801067226470, 2.10401434444438292990349194328, 3.00972019751601224361048375984, 3.67396666486065637441511456548, 4.22272834484936131716525105368, 5.09801316664331499715467423459, 5.38878711423341380944684140453, 6.28110316926861404760164348297, 6.52924991940456141515104550178, 7.16259874971708978058320588378, 7.73084422370407835967708773407, 8.321497471063270954586668670813, 8.726898993899909307287620084311, 9.105785492387691411460037633518, 9.706493415512552339143206653789

Graph of the $Z$-function along the critical line