Properties

Label 4-2880e2-1.1-c1e2-0-8
Degree $4$
Conductor $8294400$
Sign $1$
Analytic cond. $528.858$
Root an. cond. $4.79550$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·13-s − 25-s − 16·31-s + 20·37-s + 12·41-s − 8·43-s + 10·49-s − 20·53-s − 8·65-s + 24·67-s − 32·79-s + 8·83-s − 20·89-s − 40·107-s + 18·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 32·155-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.10·13-s − 1/5·25-s − 2.87·31-s + 3.28·37-s + 1.87·41-s − 1.21·43-s + 10/7·49-s − 2.74·53-s − 0.992·65-s + 2.93·67-s − 3.60·79-s + 0.878·83-s − 2.11·89-s − 3.86·107-s + 1.63·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.57·155-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8294400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8294400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(8294400\)    =    \(2^{12} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(528.858\)
Root analytic conductor: \(4.79550\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 8294400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.368713514\)
\(L(\frac12)\) \(\approx\) \(1.368713514\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.162995944366059425466767799339, −8.387134035990489276766665418250, −8.190365744772538123403888906739, −7.910449631036686579642143372138, −7.52000547906358510361120980502, −7.05396303804935824699683401699, −6.88922716980739344009202808527, −6.06951324130777776679767519808, −6.01871320025884937751089199515, −5.61777388354952501180826228999, −5.10412056097083326860946758494, −4.54022443721985578394127477529, −4.08224064862707085530631010825, −3.90153461380821647862837790970, −3.50805525049656096733039729377, −2.81298082593325811837869649026, −2.51531953082232572790009597797, −1.68190882258874019825918592571, −1.22843582981237085624879019230, −0.40136974287515611266036619101, 0.40136974287515611266036619101, 1.22843582981237085624879019230, 1.68190882258874019825918592571, 2.51531953082232572790009597797, 2.81298082593325811837869649026, 3.50805525049656096733039729377, 3.90153461380821647862837790970, 4.08224064862707085530631010825, 4.54022443721985578394127477529, 5.10412056097083326860946758494, 5.61777388354952501180826228999, 6.01871320025884937751089199515, 6.06951324130777776679767519808, 6.88922716980739344009202808527, 7.05396303804935824699683401699, 7.52000547906358510361120980502, 7.910449631036686579642143372138, 8.190365744772538123403888906739, 8.387134035990489276766665418250, 9.162995944366059425466767799339

Graph of the $Z$-function along the critical line