Properties

Label 4-285e2-1.1-c1e2-0-9
Degree $4$
Conductor $81225$
Sign $1$
Analytic cond. $5.17897$
Root an. cond. $1.50855$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 5-s + 2·6-s − 4·7-s + 4·8-s + 2·10-s + 2·11-s + 2·12-s − 2·13-s − 8·14-s + 15-s + 8·16-s − 2·17-s + 19-s + 2·20-s − 4·21-s + 4·22-s + 4·23-s + 4·24-s − 4·26-s − 27-s − 8·28-s + 5·29-s + 2·30-s + 18·31-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s + 0.816·6-s − 1.51·7-s + 1.41·8-s + 0.632·10-s + 0.603·11-s + 0.577·12-s − 0.554·13-s − 2.13·14-s + 0.258·15-s + 2·16-s − 0.485·17-s + 0.229·19-s + 0.447·20-s − 0.872·21-s + 0.852·22-s + 0.834·23-s + 0.816·24-s − 0.784·26-s − 0.192·27-s − 1.51·28-s + 0.928·29-s + 0.365·30-s + 3.23·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(81225\)    =    \(3^{2} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(5.17897\)
Root analytic conductor: \(1.50855\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 81225,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.834661579\)
\(L(\frac12)\) \(\approx\) \(3.834661579\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 - T + p T^{2} \)
good2$C_2^2$ \( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 4 T - 7 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 5 T - 4 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 10 T + 57 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T - 49 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 7 T - 10 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 7 T - 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 3 T - 62 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 2 T - 69 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 11 T + 42 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 15 T + 136 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 8 T - 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46209941022812208600273517696, −11.93696717434466127438971427028, −11.21198045734166541035629071582, −10.59004637505799710566969515085, −10.12559445741482174879000747059, −9.910908038325248261984370336318, −9.249830612000781248658361048083, −8.823268492205497817692326779418, −8.149573713843049867930795382755, −7.62215301032654969398137388535, −6.87269569677938404522904086291, −6.44140976779586295962524123115, −6.35392494596635930365160337874, −5.13903439692708512630776699117, −5.11183917912864208719460375644, −4.19230080735664690705498155337, −3.79557217055336642956445750817, −2.81806558401859571988235238245, −2.79162727271473692132161533456, −1.39979474596827242053889525407, 1.39979474596827242053889525407, 2.79162727271473692132161533456, 2.81806558401859571988235238245, 3.79557217055336642956445750817, 4.19230080735664690705498155337, 5.11183917912864208719460375644, 5.13903439692708512630776699117, 6.35392494596635930365160337874, 6.44140976779586295962524123115, 6.87269569677938404522904086291, 7.62215301032654969398137388535, 8.149573713843049867930795382755, 8.823268492205497817692326779418, 9.249830612000781248658361048083, 9.910908038325248261984370336318, 10.12559445741482174879000747059, 10.59004637505799710566969515085, 11.21198045734166541035629071582, 11.93696717434466127438971427028, 12.46209941022812208600273517696

Graph of the $Z$-function along the critical line