| L(s) = 1 | − 2·3-s + 3·4-s + 2·5-s − 2·7-s + 3·9-s + 6·11-s − 6·12-s − 6·13-s − 4·15-s + 5·16-s − 8·17-s − 2·19-s + 6·20-s + 4·21-s + 8·23-s + 3·25-s − 4·27-s − 6·28-s + 2·29-s + 12·31-s − 12·33-s − 4·35-s + 9·36-s + 2·37-s + 12·39-s − 14·41-s + 6·43-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 3/2·4-s + 0.894·5-s − 0.755·7-s + 9-s + 1.80·11-s − 1.73·12-s − 1.66·13-s − 1.03·15-s + 5/4·16-s − 1.94·17-s − 0.458·19-s + 1.34·20-s + 0.872·21-s + 1.66·23-s + 3/5·25-s − 0.769·27-s − 1.13·28-s + 0.371·29-s + 2.15·31-s − 2.08·33-s − 0.676·35-s + 3/2·36-s + 0.328·37-s + 1.92·39-s − 2.18·41-s + 0.914·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.623072106\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.623072106\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.13837975172374549503100235117, −11.38756509348376275999744915614, −11.36471851826579499463366400610, −10.74072057737776164736606977967, −10.18739812158716040263250652269, −9.949553341683311924501606218120, −9.308506745153719777501357755781, −8.957272504747976715941407857687, −8.252292213850488453803911291376, −7.07298766388026975824108747754, −7.02375917117060883853258051725, −6.59347835013690321556803685122, −6.39052012354167499822551865270, −5.79765047757978808166933689828, −4.91150139506397591927910874452, −4.61530551040323117217267653120, −3.65404537443948603368575444572, −2.54350021810836172772364651152, −2.26979476609353166891886826979, −1.09419492147748949812882672059,
1.09419492147748949812882672059, 2.26979476609353166891886826979, 2.54350021810836172772364651152, 3.65404537443948603368575444572, 4.61530551040323117217267653120, 4.91150139506397591927910874452, 5.79765047757978808166933689828, 6.39052012354167499822551865270, 6.59347835013690321556803685122, 7.02375917117060883853258051725, 7.07298766388026975824108747754, 8.252292213850488453803911291376, 8.957272504747976715941407857687, 9.308506745153719777501357755781, 9.949553341683311924501606218120, 10.18739812158716040263250652269, 10.74072057737776164736606977967, 11.36471851826579499463366400610, 11.38756509348376275999744915614, 12.13837975172374549503100235117