Properties

Label 4-285e2-1.1-c1e2-0-15
Degree $4$
Conductor $81225$
Sign $1$
Analytic cond. $5.17897$
Root an. cond. $1.50855$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 5-s + 2·6-s − 4·7-s − 4·8-s − 2·10-s − 6·11-s − 2·12-s − 6·13-s + 8·14-s − 15-s + 8·16-s − 6·17-s − 7·19-s + 2·20-s + 4·21-s + 12·22-s + 8·23-s + 4·24-s + 12·26-s + 27-s − 8·28-s − 7·29-s + 2·30-s + 18·31-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s + 0.816·6-s − 1.51·7-s − 1.41·8-s − 0.632·10-s − 1.80·11-s − 0.577·12-s − 1.66·13-s + 2.13·14-s − 0.258·15-s + 2·16-s − 1.45·17-s − 1.60·19-s + 0.447·20-s + 0.872·21-s + 2.55·22-s + 1.66·23-s + 0.816·24-s + 2.35·26-s + 0.192·27-s − 1.51·28-s − 1.29·29-s + 0.365·30-s + 3.23·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(81225\)    =    \(3^{2} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(5.17897\)
Root analytic conductor: \(1.50855\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 81225,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 + 7 T + p T^{2} \)
good2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 8 T + 41 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 7 T + 20 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 10 T + 57 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 4 T - 31 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 14 T + 143 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 3 T - 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 7 T - 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 4 T - 51 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 7 T - 22 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 2 T - 69 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 5 T - 54 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 3 T - 80 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 12 T + 47 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44041867504039776305930414875, −10.98736794779768087415666667552, −10.32776115212624264008329999657, −10.13064529512781838969351215215, −9.754558477423477865376608101697, −9.423290489395488255228182447854, −8.601920224152026676854597448667, −8.544249894031179165270497702281, −7.86714648183370700147441033604, −7.11203936558606311489231782150, −6.63694526306519805057173474227, −6.38110975283015426625228134665, −5.78268758879400743688009078343, −4.85758787905193926360500455544, −4.74765612346183049747446150585, −3.02371113009014549865396421030, −2.96082758001508475377852847490, −2.08658067997107687672058176598, 0, 0, 2.08658067997107687672058176598, 2.96082758001508475377852847490, 3.02371113009014549865396421030, 4.74765612346183049747446150585, 4.85758787905193926360500455544, 5.78268758879400743688009078343, 6.38110975283015426625228134665, 6.63694526306519805057173474227, 7.11203936558606311489231782150, 7.86714648183370700147441033604, 8.544249894031179165270497702281, 8.601920224152026676854597448667, 9.423290489395488255228182447854, 9.754558477423477865376608101697, 10.13064529512781838969351215215, 10.32776115212624264008329999657, 10.98736794779768087415666667552, 11.44041867504039776305930414875

Graph of the $Z$-function along the critical line