Properties

Label 4-281216-1.1-c1e2-0-6
Degree $4$
Conductor $281216$
Sign $-1$
Analytic cond. $17.9305$
Root an. cond. $2.05777$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s + 3·9-s − 2·10-s + 4·11-s + 13-s + 16-s − 6·17-s − 3·18-s − 12·19-s + 2·20-s − 4·22-s − 8·23-s − 7·25-s − 26-s − 32-s + 6·34-s + 3·36-s − 6·37-s + 12·38-s − 2·40-s + 4·44-s + 6·45-s + 8·46-s − 13·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s + 9-s − 0.632·10-s + 1.20·11-s + 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.707·18-s − 2.75·19-s + 0.447·20-s − 0.852·22-s − 1.66·23-s − 7/5·25-s − 0.196·26-s − 0.176·32-s + 1.02·34-s + 1/2·36-s − 0.986·37-s + 1.94·38-s − 0.316·40-s + 0.603·44-s + 0.894·45-s + 1.17·46-s − 1.85·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281216 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281216 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(281216\)    =    \(2^{7} \cdot 13^{3}\)
Sign: $-1$
Analytic conductor: \(17.9305\)
Root analytic conductor: \(2.05777\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 281216,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
13$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.567359956354704438407736576121, −8.310061634639968993764403624165, −7.938211248845934878732993890823, −6.92880645805086748841087984321, −6.79038227196567694631715258566, −6.40941752007862407532170431759, −5.98494658430119741237026147495, −5.41501572629242590776107371268, −4.42326331313024154570777237165, −4.09964629322041262514106195672, −3.79033676077549186455122166647, −2.47488980077832639227670038418, −1.82604108038319412812644968804, −1.74404149014246056815546005306, 0, 1.74404149014246056815546005306, 1.82604108038319412812644968804, 2.47488980077832639227670038418, 3.79033676077549186455122166647, 4.09964629322041262514106195672, 4.42326331313024154570777237165, 5.41501572629242590776107371268, 5.98494658430119741237026147495, 6.40941752007862407532170431759, 6.79038227196567694631715258566, 6.92880645805086748841087984321, 7.938211248845934878732993890823, 8.310061634639968993764403624165, 8.567359956354704438407736576121

Graph of the $Z$-function along the critical line