Properties

Label 4-280e2-1.1-c1e2-0-6
Degree $4$
Conductor $78400$
Sign $1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 5·7-s + 8-s + 9-s − 4·11-s − 2·12-s + 6·13-s + 5·14-s + 16-s − 6·17-s + 18-s − 2·19-s − 10·21-s − 4·22-s + 5·23-s − 2·24-s + 25-s + 6·26-s − 2·27-s + 5·28-s + 14·31-s + 32-s + 8·33-s − 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 1.88·7-s + 0.353·8-s + 1/3·9-s − 1.20·11-s − 0.577·12-s + 1.66·13-s + 1.33·14-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.458·19-s − 2.18·21-s − 0.852·22-s + 1.04·23-s − 0.408·24-s + 1/5·25-s + 1.17·26-s − 0.384·27-s + 0.944·28-s + 2.51·31-s + 0.176·32-s + 1.39·33-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.844927420\)
\(L(\frac12)\) \(\approx\) \(1.844927420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$D_{4}$ \( 1 + 4 T + 13 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$D_{4}$ \( 1 + 6 T + 22 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 7 T + 40 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 53 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 12 T + 109 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 6 T + 73 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 2 T + 57 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$D_{4}$ \( 1 + 6 T - 2 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$D_{4}$ \( 1 + 12 T + 163 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 35 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 6 T - 74 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.1065845275, −13.6927588279, −13.4314607769, −13.1781538817, −12.3664349478, −11.9989719764, −11.5019388662, −11.1764922411, −10.9377232049, −10.5255132440, −10.1688575662, −9.06757723706, −8.57249933375, −8.24716026120, −7.80313132311, −6.93045676289, −6.63214161334, −5.92186832869, −5.45247701395, −5.05904161934, −4.44797997287, −4.10410366168, −2.90253143149, −2.13286335703, −1.10137316308, 1.10137316308, 2.13286335703, 2.90253143149, 4.10410366168, 4.44797997287, 5.05904161934, 5.45247701395, 5.92186832869, 6.63214161334, 6.93045676289, 7.80313132311, 8.24716026120, 8.57249933375, 9.06757723706, 10.1688575662, 10.5255132440, 10.9377232049, 11.1764922411, 11.5019388662, 11.9989719764, 12.3664349478, 13.1781538817, 13.4314607769, 13.6927588279, 14.1065845275

Graph of the $Z$-function along the critical line