Properties

Label 4-280e2-1.1-c1e2-0-31
Degree $4$
Conductor $78400$
Sign $-1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 5·9-s − 2·13-s − 6·17-s + 3·25-s − 18·29-s − 20·37-s − 10·45-s + 49-s + 16·61-s − 4·65-s + 28·73-s + 16·81-s − 12·85-s + 24·89-s + 34·97-s − 12·101-s − 38·109-s − 12·113-s + 10·117-s − 13·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 36·145-s + ⋯
L(s)  = 1  + 0.894·5-s − 5/3·9-s − 0.554·13-s − 1.45·17-s + 3/5·25-s − 3.34·29-s − 3.28·37-s − 1.49·45-s + 1/7·49-s + 2.04·61-s − 0.496·65-s + 3.27·73-s + 16/9·81-s − 1.30·85-s + 2.54·89-s + 3.45·97-s − 1.19·101-s − 3.63·109-s − 1.12·113-s + 0.924·117-s − 1.18·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.98·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.375175591104324316941268909160, −8.980861688416760643046869733716, −8.753603075201557578492983990278, −8.046356379591346049691472796650, −7.50080687239149741983670353733, −6.67050874393051432711601966688, −6.60075882433919903374418695456, −5.59805653954512089440221213789, −5.40018100386713622724414679311, −4.97734488095803542825402310226, −3.80030272906745320072379387841, −3.40261805032806216019286027323, −2.16340813030352361640823678027, −2.14587146010097196258543648767, 0, 2.14587146010097196258543648767, 2.16340813030352361640823678027, 3.40261805032806216019286027323, 3.80030272906745320072379387841, 4.97734488095803542825402310226, 5.40018100386713622724414679311, 5.59805653954512089440221213789, 6.60075882433919903374418695456, 6.67050874393051432711601966688, 7.50080687239149741983670353733, 8.046356379591346049691472796650, 8.753603075201557578492983990278, 8.980861688416760643046869733716, 9.375175591104324316941268909160

Graph of the $Z$-function along the critical line