Properties

Label 4-280e2-1.1-c1e2-0-30
Degree $4$
Conductor $78400$
Sign $-1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s − 6·11-s − 4·19-s − 5·25-s − 6·29-s − 8·31-s − 49-s − 12·59-s + 12·61-s + 2·79-s − 8·81-s + 12·89-s − 6·99-s − 12·101-s + 14·109-s + 9·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s − 4·171-s + ⋯
L(s)  = 1  + 1/3·9-s − 1.80·11-s − 0.917·19-s − 25-s − 1.11·29-s − 1.43·31-s − 1/7·49-s − 1.56·59-s + 1.53·61-s + 0.225·79-s − 8/9·81-s + 1.27·89-s − 0.603·99-s − 1.19·101-s + 1.34·109-s + 9/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s − 0.305·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
67$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 121 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.449569384536334459449427792303, −9.141511645418032128974422071237, −8.285154518963495569585330540727, −8.112752634447646934151460360866, −7.34876582938456287110941968527, −7.24324896122750374545752276054, −6.31541136430258616123596348037, −5.77087831288352235270478699134, −5.31719389197363086114051259904, −4.71736690898701920121959631701, −3.99452824658759798901698584232, −3.36981164547288264956855983154, −2.44568039769077264709692689295, −1.84113530317324607806796164685, 0, 1.84113530317324607806796164685, 2.44568039769077264709692689295, 3.36981164547288264956855983154, 3.99452824658759798901698584232, 4.71736690898701920121959631701, 5.31719389197363086114051259904, 5.77087831288352235270478699134, 6.31541136430258616123596348037, 7.24324896122750374545752276054, 7.34876582938456287110941968527, 8.112752634447646934151460360866, 8.285154518963495569585330540727, 9.141511645418032128974422071237, 9.449569384536334459449427792303

Graph of the $Z$-function along the critical line