Properties

Label 4-280e2-1.1-c1e2-0-26
Degree $4$
Conductor $78400$
Sign $-1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 3·9-s − 6·13-s − 2·17-s + 3·25-s − 18·29-s + 4·37-s − 8·41-s − 6·45-s + 49-s + 8·53-s − 16·61-s + 12·65-s + 4·73-s + 4·85-s + 8·89-s − 26·97-s + 12·101-s − 6·109-s + 28·113-s − 18·117-s + 3·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 0.894·5-s + 9-s − 1.66·13-s − 0.485·17-s + 3/5·25-s − 3.34·29-s + 0.657·37-s − 1.24·41-s − 0.894·45-s + 1/7·49-s + 1.09·53-s − 2.04·61-s + 1.48·65-s + 0.468·73-s + 0.433·85-s + 0.847·89-s − 2.63·97-s + 1.19·101-s − 0.574·109-s + 2.63·113-s − 1.66·117-s + 3/11·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.716558810176534364860056345490, −9.025895505037624522078550270792, −8.548341637730933961960631631377, −7.73731776455161087713955528993, −7.33986466138726521878856236101, −7.32545514222645839389554035710, −6.55070763080365592509044517141, −5.79502306005565665039377390440, −5.11248277682454093810005074849, −4.64056350631119746271470996824, −4.00451609950028562939589775427, −3.51475005035302395747602864778, −2.51163217316890307126702952381, −1.70936955426510995854988214866, 0, 1.70936955426510995854988214866, 2.51163217316890307126702952381, 3.51475005035302395747602864778, 4.00451609950028562939589775427, 4.64056350631119746271470996824, 5.11248277682454093810005074849, 5.79502306005565665039377390440, 6.55070763080365592509044517141, 7.32545514222645839389554035710, 7.33986466138726521878856236101, 7.73731776455161087713955528993, 8.548341637730933961960631631377, 9.025895505037624522078550270792, 9.716558810176534364860056345490

Graph of the $Z$-function along the critical line