Properties

Label 4-280e2-1.1-c1e2-0-18
Degree $4$
Conductor $78400$
Sign $-1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·7-s + 9-s − 2·11-s + 4·16-s − 2·23-s − 25-s + 4·28-s + 4·29-s − 2·36-s + 2·37-s − 14·43-s + 4·44-s − 3·49-s + 8·53-s − 2·63-s − 8·64-s − 8·67-s − 24·71-s + 4·77-s − 8·79-s − 8·81-s + 4·92-s − 2·99-s + 2·100-s − 16·107-s − 24·109-s + ⋯
L(s)  = 1  − 4-s − 0.755·7-s + 1/3·9-s − 0.603·11-s + 16-s − 0.417·23-s − 1/5·25-s + 0.755·28-s + 0.742·29-s − 1/3·36-s + 0.328·37-s − 2.13·43-s + 0.603·44-s − 3/7·49-s + 1.09·53-s − 0.251·63-s − 64-s − 0.977·67-s − 2.84·71-s + 0.455·77-s − 0.900·79-s − 8/9·81-s + 0.417·92-s − 0.201·99-s + 1/5·100-s − 1.54·107-s − 2.29·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.530726762458101409845708973625, −9.070142372419595448498611775310, −8.438386145726038831072500723921, −8.186020340391007454180225750519, −7.51110857423172456077324131289, −6.97164380745272621726069145499, −6.37791787319586287423789369386, −5.75207414829334705304948116898, −5.29181140436576152015639453623, −4.54337057823815951116088222595, −4.15230772973903661454488682421, −3.31219162858747036612992275826, −2.78529002426946111321512338978, −1.50248106348787892601161790396, 0, 1.50248106348787892601161790396, 2.78529002426946111321512338978, 3.31219162858747036612992275826, 4.15230772973903661454488682421, 4.54337057823815951116088222595, 5.29181140436576152015639453623, 5.75207414829334705304948116898, 6.37791787319586287423789369386, 6.97164380745272621726069145499, 7.51110857423172456077324131289, 8.186020340391007454180225750519, 8.438386145726038831072500723921, 9.070142372419595448498611775310, 9.530726762458101409845708973625

Graph of the $Z$-function along the critical line