Properties

Label 4-280e2-1.1-c1e2-0-16
Degree $4$
Conductor $78400$
Sign $1$
Analytic cond. $4.99885$
Root an. cond. $1.49526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·7-s + 9-s + 2·11-s + 8·14-s − 4·16-s + 2·18-s + 4·22-s − 12·23-s + 25-s + 8·28-s + 12·29-s − 8·32-s + 2·36-s + 12·37-s − 8·43-s + 4·44-s − 24·46-s + 9·49-s + 2·50-s − 8·53-s + 24·58-s + 4·63-s − 8·64-s + 4·67-s + 8·71-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.51·7-s + 1/3·9-s + 0.603·11-s + 2.13·14-s − 16-s + 0.471·18-s + 0.852·22-s − 2.50·23-s + 1/5·25-s + 1.51·28-s + 2.22·29-s − 1.41·32-s + 1/3·36-s + 1.97·37-s − 1.21·43-s + 0.603·44-s − 3.53·46-s + 9/7·49-s + 0.282·50-s − 1.09·53-s + 3.15·58-s + 0.503·63-s − 64-s + 0.488·67-s + 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.99885\)
Root analytic conductor: \(1.49526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 78400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.575544077\)
\(L(\frac12)\) \(\approx\) \(3.575544077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 11 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.859772092417623537441417022748, −9.326547603634860485135833727700, −8.492363413233227370023600323835, −8.217875801680133513099365375331, −7.81681140426311786912909363481, −7.00737412264033019137398591174, −6.46828979882124835568402765740, −6.04239278787907299150569896364, −5.44207644392834886456190988700, −4.79124251808362988278289760619, −4.28862990164809284247188295945, −4.10973650596639880735100602431, −3.08004302475956490314706032482, −2.30555874067476859349593118359, −1.44978607363769425296824455358, 1.44978607363769425296824455358, 2.30555874067476859349593118359, 3.08004302475956490314706032482, 4.10973650596639880735100602431, 4.28862990164809284247188295945, 4.79124251808362988278289760619, 5.44207644392834886456190988700, 6.04239278787907299150569896364, 6.46828979882124835568402765740, 7.00737412264033019137398591174, 7.81681140426311786912909363481, 8.217875801680133513099365375331, 8.492363413233227370023600323835, 9.326547603634860485135833727700, 9.859772092417623537441417022748

Graph of the $Z$-function along the critical line