Properties

Label 4-273e2-1.1-c1e2-0-14
Degree $4$
Conductor $74529$
Sign $1$
Analytic cond. $4.75203$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s + 9-s − 2·13-s + 5·16-s + 8·17-s − 4·23-s − 2·25-s + 4·29-s + 3·36-s − 16·43-s + 49-s − 6·52-s + 20·53-s + 4·61-s + 3·64-s + 24·68-s − 8·79-s + 81-s − 12·92-s − 6·100-s − 8·101-s − 12·107-s − 20·113-s + 12·116-s − 2·117-s − 10·121-s + 127-s + ⋯
L(s)  = 1  + 3/2·4-s + 1/3·9-s − 0.554·13-s + 5/4·16-s + 1.94·17-s − 0.834·23-s − 2/5·25-s + 0.742·29-s + 1/2·36-s − 2.43·43-s + 1/7·49-s − 0.832·52-s + 2.74·53-s + 0.512·61-s + 3/8·64-s + 2.91·68-s − 0.900·79-s + 1/9·81-s − 1.25·92-s − 3/5·100-s − 0.796·101-s − 1.16·107-s − 1.88·113-s + 1.11·116-s − 0.184·117-s − 0.909·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.75203\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74529,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.185201482\)
\(L(\frac12)\) \(\approx\) \(2.185201482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04060167430973625690266395105, −9.509789235627489810465129961065, −8.651472367673802417867505956894, −8.087122868124748556333819782542, −7.77561300480119923795680807540, −7.11919441702277745134242616849, −6.84791804438814148842718143863, −6.24628037433267946771516149900, −5.55154188786331842470106103432, −5.27814792294585055557768488491, −4.26012648427532404918209751723, −3.55184179503814644720599334297, −2.89512763316926805245058442270, −2.17237344320845611717407226816, −1.31980219556990438978714861945, 1.31980219556990438978714861945, 2.17237344320845611717407226816, 2.89512763316926805245058442270, 3.55184179503814644720599334297, 4.26012648427532404918209751723, 5.27814792294585055557768488491, 5.55154188786331842470106103432, 6.24628037433267946771516149900, 6.84791804438814148842718143863, 7.11919441702277745134242616849, 7.77561300480119923795680807540, 8.087122868124748556333819782542, 8.651472367673802417867505956894, 9.509789235627489810465129961065, 10.04060167430973625690266395105

Graph of the $Z$-function along the critical line