Properties

Label 4-273e2-1.1-c1e2-0-12
Degree $4$
Conductor $74529$
Sign $1$
Analytic cond. $4.75203$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 2·13-s − 4·16-s + 14·17-s − 25-s − 4·27-s − 4·29-s + 4·39-s − 10·43-s − 8·48-s + 49-s + 28·51-s + 16·53-s + 8·61-s − 2·75-s + 14·79-s − 11·81-s − 8·87-s + 2·101-s − 24·103-s + 12·107-s − 8·113-s + 2·117-s − 2·121-s + 127-s − 20·129-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.554·13-s − 16-s + 3.39·17-s − 1/5·25-s − 0.769·27-s − 0.742·29-s + 0.640·39-s − 1.52·43-s − 1.15·48-s + 1/7·49-s + 3.92·51-s + 2.19·53-s + 1.02·61-s − 0.230·75-s + 1.57·79-s − 1.22·81-s − 0.857·87-s + 0.199·101-s − 2.36·103-s + 1.16·107-s − 0.752·113-s + 0.184·117-s − 0.181·121-s + 0.0887·127-s − 1.76·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.75203\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74529,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.247421504\)
\(L(\frac12)\) \(\approx\) \(2.247421504\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 57 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 61 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 85 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.662553758628742923229757766439, −9.349800992029380856054041667135, −8.694069126243437825975694888547, −8.334345867786345161330730273660, −7.77474048251910877902271437824, −7.51370223738528692248808465468, −6.83657059419669489748788694050, −6.14828682419663722224158809179, −5.36081557005507960233310195695, −5.27224721131239647063938857010, −3.97787308182029880377496144443, −3.66023265188208973537832346816, −3.05678979431387656308892016838, −2.27604132028694741351524060428, −1.26715152674933141322114489520, 1.26715152674933141322114489520, 2.27604132028694741351524060428, 3.05678979431387656308892016838, 3.66023265188208973537832346816, 3.97787308182029880377496144443, 5.27224721131239647063938857010, 5.36081557005507960233310195695, 6.14828682419663722224158809179, 6.83657059419669489748788694050, 7.51370223738528692248808465468, 7.77474048251910877902271437824, 8.334345867786345161330730273660, 8.694069126243437825975694888547, 9.349800992029380856054041667135, 9.662553758628742923229757766439

Graph of the $Z$-function along the critical line