Properties

Label 4-273e2-1.1-c0e2-0-0
Degree $4$
Conductor $74529$
Sign $1$
Analytic cond. $0.0185626$
Root an. cond. $0.369113$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s − 7-s + 3·9-s − 2·12-s + 13-s + 2·21-s + 25-s − 4·27-s − 28-s + 3·36-s − 3·37-s − 2·39-s + 43-s + 52-s + 2·61-s − 3·63-s − 64-s + 3·73-s − 2·75-s + 2·79-s + 5·81-s + 2·84-s − 91-s − 3·97-s + 100-s + 103-s + ⋯
L(s)  = 1  − 2·3-s + 4-s − 7-s + 3·9-s − 2·12-s + 13-s + 2·21-s + 25-s − 4·27-s − 28-s + 3·36-s − 3·37-s − 2·39-s + 43-s + 52-s + 2·61-s − 3·63-s − 64-s + 3·73-s − 2·75-s + 2·79-s + 5·81-s + 2·84-s − 91-s − 3·97-s + 100-s + 103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.0185626\)
Root analytic conductor: \(0.369113\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74529,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3804972900\)
\(L(\frac12)\) \(\approx\) \(0.3804972900\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{2} \)
7$C_2$ \( 1 + T + T^{2} \)
13$C_2$ \( 1 - T + T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.21478609160988315795871640522, −11.87490388375215911035924395721, −11.44025993680020983483871662485, −10.77707517022733189925787755119, −10.73729017302974224375945052043, −10.41696182587682520291866098780, −9.568451186236934005366202867373, −9.359248616527200161023906761317, −8.510731366976896533047150480091, −7.83973197499347162017517243446, −7.00229180965700669090160272860, −6.79833414770465699130613908780, −6.54316899649752673161633725075, −6.00832376685068544816406181762, −5.26080347827440286494183730227, −5.08950355497316490780574246973, −3.93805820588745944624488189519, −3.59200892656335830214746979321, −2.38374102043130098665145034659, −1.32217805949075965076820073204, 1.32217805949075965076820073204, 2.38374102043130098665145034659, 3.59200892656335830214746979321, 3.93805820588745944624488189519, 5.08950355497316490780574246973, 5.26080347827440286494183730227, 6.00832376685068544816406181762, 6.54316899649752673161633725075, 6.79833414770465699130613908780, 7.00229180965700669090160272860, 7.83973197499347162017517243446, 8.510731366976896533047150480091, 9.359248616527200161023906761317, 9.568451186236934005366202867373, 10.41696182587682520291866098780, 10.73729017302974224375945052043, 10.77707517022733189925787755119, 11.44025993680020983483871662485, 11.87490388375215911035924395721, 12.21478609160988315795871640522

Graph of the $Z$-function along the critical line