Properties

Label 4-2738e2-1.1-c1e2-0-5
Degree $4$
Conductor $7496644$
Sign $1$
Analytic cond. $477.992$
Root an. cond. $4.67579$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 3·4-s − 4·6-s − 4·7-s + 4·8-s + 6·11-s − 6·12-s − 8·14-s + 5·16-s − 12·17-s + 6·19-s + 8·21-s + 12·22-s − 6·23-s − 8·24-s − 7·25-s + 2·27-s − 12·28-s − 6·31-s + 6·32-s − 12·33-s − 24·34-s + 12·38-s − 6·41-s + 16·42-s − 12·43-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 3/2·4-s − 1.63·6-s − 1.51·7-s + 1.41·8-s + 1.80·11-s − 1.73·12-s − 2.13·14-s + 5/4·16-s − 2.91·17-s + 1.37·19-s + 1.74·21-s + 2.55·22-s − 1.25·23-s − 1.63·24-s − 7/5·25-s + 0.384·27-s − 2.26·28-s − 1.07·31-s + 1.06·32-s − 2.08·33-s − 4.11·34-s + 1.94·38-s − 0.937·41-s + 2.46·42-s − 1.82·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7496644 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7496644 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7496644\)    =    \(2^{2} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(477.992\)
Root analytic conductor: \(4.67579\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 7496644,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
37 \( 1 \)
good3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$D_{4}$ \( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 12 T + 67 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 6 T + 44 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 52 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 6 T + 68 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 6 T + 43 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 12 T + 74 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 12 T + 142 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 119 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 10 T + 132 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 30 T + 380 T^{2} + 30 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 24 T + 295 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 12 T + 227 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.510623138326621516476805013412, −8.440409622199163947794741119380, −7.60637182309198619999902546440, −7.01225481852326724150114620206, −6.91047436276092639395768863924, −6.65607482395423267467531681286, −6.17231498700478138211490893016, −6.03396961650184837807967465929, −5.44044354987971704583589709051, −5.43641703514560411782166993012, −4.60279281571557584904701699579, −4.19213866662575127366344050155, −3.97802021878727416133530663380, −3.59838178842967269665208327861, −3.00411989387278110851113694780, −2.58886391109544257098795459155, −1.77623580547409915280527186107, −1.51727124795067290893734406995, 0, 0, 1.51727124795067290893734406995, 1.77623580547409915280527186107, 2.58886391109544257098795459155, 3.00411989387278110851113694780, 3.59838178842967269665208327861, 3.97802021878727416133530663380, 4.19213866662575127366344050155, 4.60279281571557584904701699579, 5.43641703514560411782166993012, 5.44044354987971704583589709051, 6.03396961650184837807967465929, 6.17231498700478138211490893016, 6.65607482395423267467531681286, 6.91047436276092639395768863924, 7.01225481852326724150114620206, 7.60637182309198619999902546440, 8.440409622199163947794741119380, 8.510623138326621516476805013412

Graph of the $Z$-function along the critical line