L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 4·6-s − 4·7-s + 4·8-s + 6·11-s − 6·12-s − 8·14-s + 5·16-s − 12·17-s + 6·19-s + 8·21-s + 12·22-s − 6·23-s − 8·24-s − 7·25-s + 2·27-s − 12·28-s − 6·31-s + 6·32-s − 12·33-s − 24·34-s + 12·38-s − 6·41-s + 16·42-s − 12·43-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s − 1.63·6-s − 1.51·7-s + 1.41·8-s + 1.80·11-s − 1.73·12-s − 2.13·14-s + 5/4·16-s − 2.91·17-s + 1.37·19-s + 1.74·21-s + 2.55·22-s − 1.25·23-s − 1.63·24-s − 7/5·25-s + 0.384·27-s − 2.26·28-s − 1.07·31-s + 1.06·32-s − 2.08·33-s − 4.11·34-s + 1.94·38-s − 0.937·41-s + 2.46·42-s − 1.82·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7496644 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7496644 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 - T )^{2} \) |
| 37 | | \( 1 \) |
good | 3 | $D_{4}$ | \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 5 | $C_2^2$ | \( 1 + 7 T^{2} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 11 | $D_{4}$ | \( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 14 T^{2} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 12 T + 67 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 19 | $D_{4}$ | \( 1 - 6 T + 44 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 23 | $D_{4}$ | \( 1 + 6 T + 52 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 - 17 T^{2} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 6 T + 68 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 6 T + 43 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 + 12 T + 74 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 12 T + 142 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 119 T^{2} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 - 10 T + 132 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2^2$ | \( 1 + 130 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 79 | $D_{4}$ | \( 1 + 30 T + 380 T^{2} + 30 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 24 T + 295 T^{2} + 24 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 12 T + 227 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.510623138326621516476805013412, −8.440409622199163947794741119380, −7.60637182309198619999902546440, −7.01225481852326724150114620206, −6.91047436276092639395768863924, −6.65607482395423267467531681286, −6.17231498700478138211490893016, −6.03396961650184837807967465929, −5.44044354987971704583589709051, −5.43641703514560411782166993012, −4.60279281571557584904701699579, −4.19213866662575127366344050155, −3.97802021878727416133530663380, −3.59838178842967269665208327861, −3.00411989387278110851113694780, −2.58886391109544257098795459155, −1.77623580547409915280527186107, −1.51727124795067290893734406995, 0, 0,
1.51727124795067290893734406995, 1.77623580547409915280527186107, 2.58886391109544257098795459155, 3.00411989387278110851113694780, 3.59838178842967269665208327861, 3.97802021878727416133530663380, 4.19213866662575127366344050155, 4.60279281571557584904701699579, 5.43641703514560411782166993012, 5.44044354987971704583589709051, 6.03396961650184837807967465929, 6.17231498700478138211490893016, 6.65607482395423267467531681286, 6.91047436276092639395768863924, 7.01225481852326724150114620206, 7.60637182309198619999902546440, 8.440409622199163947794741119380, 8.510623138326621516476805013412