Properties

Label 4-2736e2-1.1-c2e2-0-2
Degree $4$
Conductor $7485696$
Sign $1$
Analytic cond. $5557.79$
Root an. cond. $8.63426$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 20·7-s + 20·11-s − 20·17-s − 38·19-s − 40·23-s − 2·25-s − 160·35-s + 20·43-s − 160·47-s + 202·49-s − 160·55-s − 20·61-s − 20·73-s + 400·77-s + 140·83-s + 160·85-s + 304·95-s + 320·115-s − 400·119-s + 58·121-s + 344·125-s + 127-s + 131-s − 760·133-s + 137-s + 139-s + ⋯
L(s)  = 1  − 8/5·5-s + 20/7·7-s + 1.81·11-s − 1.17·17-s − 2·19-s − 1.73·23-s − 0.0799·25-s − 4.57·35-s + 0.465·43-s − 3.40·47-s + 4.12·49-s − 2.90·55-s − 0.327·61-s − 0.273·73-s + 5.19·77-s + 1.68·83-s + 1.88·85-s + 16/5·95-s + 2.78·115-s − 3.36·119-s + 0.479·121-s + 2.75·125-s + 0.00787·127-s + 0.00763·131-s − 5.71·133-s + 0.00729·137-s + 0.00719·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7485696\)    =    \(2^{8} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(5557.79\)
Root analytic conductor: \(8.63426\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7485696,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1392734103\)
\(L(\frac12)\) \(\approx\) \(0.1392734103\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_1$ \( ( 1 + p T )^{2} \)
good5$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
11$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 250 T^{2} + p^{4} T^{4} \)
17$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 + 20 T + p^{2} T^{2} )^{2} \)
29$C_2^2$ \( 1 - 482 T^{2} + p^{4} T^{4} \)
31$C_2^2$ \( 1 - 1622 T^{2} + p^{4} T^{4} \)
37$C_2^2$ \( 1 - 2630 T^{2} + p^{4} T^{4} \)
41$C_2^2$ \( 1 - 2162 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 + 80 T + p^{2} T^{2} )^{2} \)
53$C_2^2$ \( 1 - 3890 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 5762 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 3170 T^{2} + p^{4} T^{4} \)
71$C_2^2$ \( 1 + 718 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 10 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 12182 T^{2} + p^{4} T^{4} \)
83$C_2$ \( ( 1 - 70 T + p^{2} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 5042 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 13010 T^{2} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.939740459607827378890608954137, −8.275894058089597159868054884042, −8.182192272491092724713868251433, −7.71532754222860423244608047131, −7.70419885108029885613329107263, −6.88093828368026515409070534189, −6.65767758222565868448497478835, −6.21384291701002508986663312584, −5.85803290473776230659147779265, −5.09827804762983624473892201321, −4.71596957154463816108555574343, −4.42214055269399308662618963456, −4.23558673262339735914459964559, −3.71485947343092483477021546398, −3.61096462915241623382695676982, −2.34942641025673812072461627161, −2.11347530713007540101659571774, −1.54385997192990941027552130606, −1.29889896153095985114723183451, −0.085063885152692211467309290560, 0.085063885152692211467309290560, 1.29889896153095985114723183451, 1.54385997192990941027552130606, 2.11347530713007540101659571774, 2.34942641025673812072461627161, 3.61096462915241623382695676982, 3.71485947343092483477021546398, 4.23558673262339735914459964559, 4.42214055269399308662618963456, 4.71596957154463816108555574343, 5.09827804762983624473892201321, 5.85803290473776230659147779265, 6.21384291701002508986663312584, 6.65767758222565868448497478835, 6.88093828368026515409070534189, 7.70419885108029885613329107263, 7.71532754222860423244608047131, 8.182192272491092724713868251433, 8.275894058089597159868054884042, 8.939740459607827378890608954137

Graph of the $Z$-function along the critical line