L(s) = 1 | − 4·7-s + 2·19-s + 8·25-s + 20·29-s − 20·41-s − 24·43-s − 2·49-s − 20·53-s − 24·59-s + 16·61-s − 16·71-s + 12·73-s − 12·89-s − 16·107-s − 12·113-s + 4·121-s + 127-s + 131-s − 8·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 18·169-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 0.458·19-s + 8/5·25-s + 3.71·29-s − 3.12·41-s − 3.65·43-s − 2/7·49-s − 2.74·53-s − 3.12·59-s + 2.04·61-s − 1.89·71-s + 1.40·73-s − 1.27·89-s − 1.54·107-s − 1.12·113-s + 4/11·121-s + 0.0887·127-s + 0.0873·131-s − 0.693·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.38·169-s + ⋯ |
Λ(s)=(=(7485696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(7485696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
7485696
= 28⋅34⋅192
|
Sign: |
1
|
Analytic conductor: |
477.294 |
Root analytic conductor: |
4.67408 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 7485696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7014118220 |
L(21) |
≈ |
0.7014118220 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 19 | C2 | 1−2T+pT2 |
good | 5 | C22 | 1−8T2+p2T4 |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C22 | 1−4T2+p2T4 |
| 13 | C22 | 1−18T2+p2T4 |
| 17 | C22 | 1+16T2+p2T4 |
| 23 | C22 | 1−44T2+p2T4 |
| 29 | C2 | (1−10T+pT2)2 |
| 31 | C22 | 1−54T2+p2T4 |
| 37 | C22 | 1−42T2+p2T4 |
| 41 | C2 | (1+10T+pT2)2 |
| 43 | C2 | (1+12T+pT2)2 |
| 47 | C22 | 1−92T2+p2T4 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C22 | 1+66T2+p2T4 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1−30T2+p2T4 |
| 83 | C22 | 1−148T2+p2T4 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−122T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.347453729947505209716856214190, −8.414066668104710553780849846131, −8.388607560446760135603325460951, −8.097423073832669930039587754061, −7.47295660411565597160686734721, −6.71360108475616984799355836452, −6.68879116065859589580559759584, −6.51021849318124771537312908184, −6.32466854167710440351249863080, −5.36623782528449259751731534900, −5.11515380299465485510014742758, −4.65057334902231568529829007215, −4.55508378514584626340535146117, −3.44589469951260031632651024228, −3.35727701118365112113449531692, −2.97076155210468261316761445450, −2.71705027548671942655146982522, −1.53610189667986003881240686396, −1.41449687756811312408534331126, −0.27512453030734254081306282151,
0.27512453030734254081306282151, 1.41449687756811312408534331126, 1.53610189667986003881240686396, 2.71705027548671942655146982522, 2.97076155210468261316761445450, 3.35727701118365112113449531692, 3.44589469951260031632651024228, 4.55508378514584626340535146117, 4.65057334902231568529829007215, 5.11515380299465485510014742758, 5.36623782528449259751731534900, 6.32466854167710440351249863080, 6.51021849318124771537312908184, 6.68879116065859589580559759584, 6.71360108475616984799355836452, 7.47295660411565597160686734721, 8.097423073832669930039587754061, 8.388607560446760135603325460951, 8.414066668104710553780849846131, 9.347453729947505209716856214190