Properties

Label 4-2736e2-1.1-c1e2-0-3
Degree $4$
Conductor $7485696$
Sign $1$
Analytic cond. $477.294$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·13-s − 8·19-s + 5·25-s − 22·31-s + 21·43-s − 13·49-s − 13·61-s + 5·67-s − 7·73-s + 13·79-s − 24·97-s − 26·103-s − 36·109-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 7·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.832·13-s − 1.83·19-s + 25-s − 3.95·31-s + 3.20·43-s − 1.85·49-s − 1.66·61-s + 0.610·67-s − 0.819·73-s + 1.46·79-s − 2.43·97-s − 2.56·103-s − 3.44·109-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.538·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7485696\)    =    \(2^{8} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(477.294\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7485696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5071099064\)
\(L(\frac12)\) \(\approx\) \(0.5071099064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2$ \( 1 + 8 T + p T^{2} \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
71$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 17 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 19 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.217018669627786751824778410137, −8.608041226420124875172981369640, −8.333455060210173564403718504570, −7.75217281028595077847371960168, −7.58818215180578250457858881005, −7.00191865631041658241799674209, −6.91612203668815252784796650502, −6.36747841830732286112121533392, −5.86049083056930808109416911038, −5.57963501553589169832975105342, −5.19376121310791619633665344114, −4.59671503821827805616811907869, −4.35435377704753008912613443546, −3.80086640690622082520208224821, −3.50233521887085029830290537441, −2.69222629766550002500080713043, −2.47416338839528205052242930634, −1.82453035333257578499902791404, −1.36326145107949271972607416332, −0.22428242819769975415970190403, 0.22428242819769975415970190403, 1.36326145107949271972607416332, 1.82453035333257578499902791404, 2.47416338839528205052242930634, 2.69222629766550002500080713043, 3.50233521887085029830290537441, 3.80086640690622082520208224821, 4.35435377704753008912613443546, 4.59671503821827805616811907869, 5.19376121310791619633665344114, 5.57963501553589169832975105342, 5.86049083056930808109416911038, 6.36747841830732286112121533392, 6.91612203668815252784796650502, 7.00191865631041658241799674209, 7.58818215180578250457858881005, 7.75217281028595077847371960168, 8.333455060210173564403718504570, 8.608041226420124875172981369640, 9.217018669627786751824778410137

Graph of the $Z$-function along the critical line