Properties

Label 4-2736e2-1.1-c1e2-0-25
Degree $4$
Conductor $7485696$
Sign $1$
Analytic cond. $477.294$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 4·17-s + 2·19-s + 2·25-s − 12·31-s + 6·49-s − 16·59-s − 16·61-s + 4·67-s − 16·71-s + 16·79-s + 16·85-s + 8·95-s − 12·101-s + 16·103-s + 40·107-s + 20·121-s − 28·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 48·155-s + 157-s + 163-s + ⋯
L(s)  = 1  + 1.78·5-s + 0.970·17-s + 0.458·19-s + 2/5·25-s − 2.15·31-s + 6/7·49-s − 2.08·59-s − 2.04·61-s + 0.488·67-s − 1.89·71-s + 1.80·79-s + 1.73·85-s + 0.820·95-s − 1.19·101-s + 1.57·103-s + 3.86·107-s + 1.81·121-s − 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 3.85·155-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7485696\)    =    \(2^{8} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(477.294\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7485696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.340814497\)
\(L(\frac12)\) \(\approx\) \(3.340814497\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 64 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 186 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.254953751879335105640281244228, −8.803836303869388025887237990287, −8.314135296785240751337418251325, −7.61204689926753097539005080221, −7.59024009090100770350262745389, −7.28228606117241987537414687676, −6.56653721126262848569220390314, −6.21323297088349995759190368928, −5.91695232788834883211118404340, −5.57221263482427776957652132679, −5.36368366270603245986997134831, −4.77119336982004184635187421274, −4.38894172675062966291398448840, −3.70746400731045660772215764563, −3.29888196616525037243434017917, −2.90984757051743393826411315754, −2.21803184637689717829514482767, −1.69550106553071754436707702664, −1.58969387208120941012034376764, −0.56960718636903515176045558222, 0.56960718636903515176045558222, 1.58969387208120941012034376764, 1.69550106553071754436707702664, 2.21803184637689717829514482767, 2.90984757051743393826411315754, 3.29888196616525037243434017917, 3.70746400731045660772215764563, 4.38894172675062966291398448840, 4.77119336982004184635187421274, 5.36368366270603245986997134831, 5.57221263482427776957652132679, 5.91695232788834883211118404340, 6.21323297088349995759190368928, 6.56653721126262848569220390314, 7.28228606117241987537414687676, 7.59024009090100770350262745389, 7.61204689926753097539005080221, 8.314135296785240751337418251325, 8.803836303869388025887237990287, 9.254953751879335105640281244228

Graph of the $Z$-function along the critical line