Properties

Label 4-2736e2-1.1-c1e2-0-1
Degree $4$
Conductor $7485696$
Sign $1$
Analytic cond. $477.294$
Root an. cond. $4.67408$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·7-s − 4·11-s + 13-s − 6·17-s + 8·19-s − 4·23-s + 5·25-s + 2·29-s − 14·31-s + 12·35-s + 2·37-s + 8·41-s + 7·43-s + 8·47-s + 13·49-s − 8·53-s + 8·55-s − 12·59-s − 5·61-s − 2·65-s − 9·67-s + 2·71-s + 15·73-s + 24·77-s + 11·79-s − 12·83-s + ⋯
L(s)  = 1  − 0.894·5-s − 2.26·7-s − 1.20·11-s + 0.277·13-s − 1.45·17-s + 1.83·19-s − 0.834·23-s + 25-s + 0.371·29-s − 2.51·31-s + 2.02·35-s + 0.328·37-s + 1.24·41-s + 1.06·43-s + 1.16·47-s + 13/7·49-s − 1.09·53-s + 1.07·55-s − 1.56·59-s − 0.640·61-s − 0.248·65-s − 1.09·67-s + 0.237·71-s + 1.75·73-s + 2.73·77-s + 1.23·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7485696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7485696\)    =    \(2^{8} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(477.294\)
Root analytic conductor: \(4.67408\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7485696,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2554359799\)
\(L(\frac12)\) \(\approx\) \(0.2554359799\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_2$ \( 1 - 8 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T + 19 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 4 T - 7 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 2 T - 25 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 8 T + 23 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 7 T + 6 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 8 T + 17 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 8 T + 11 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 12 T + 85 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 9 T + 14 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 2 T - 67 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 15 T + 152 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 11 T + 42 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 19 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.254588465403944963934804538998, −8.784259842871944441195996534683, −8.153649840448480367314574553022, −7.68297041940295429103608388902, −7.58383624909787730661035929684, −7.17833761686351194720418511256, −6.77330127275235764807102755320, −6.36477781932498180868876626302, −5.85158369645341203304735718996, −5.78598780566470540757099855452, −5.14007424707999011979484774012, −4.60653433172373397212413852645, −4.26378358551390660447476156966, −3.63887174160624148002397516597, −3.34086295204750639435431510327, −3.06837802004600262315453712001, −2.51769483551444735275502002796, −2.01060275037618941154206401212, −0.945272041674421326246316822670, −0.19730853559321172433349778748, 0.19730853559321172433349778748, 0.945272041674421326246316822670, 2.01060275037618941154206401212, 2.51769483551444735275502002796, 3.06837802004600262315453712001, 3.34086295204750639435431510327, 3.63887174160624148002397516597, 4.26378358551390660447476156966, 4.60653433172373397212413852645, 5.14007424707999011979484774012, 5.78598780566470540757099855452, 5.85158369645341203304735718996, 6.36477781932498180868876626302, 6.77330127275235764807102755320, 7.17833761686351194720418511256, 7.58383624909787730661035929684, 7.68297041940295429103608388902, 8.153649840448480367314574553022, 8.784259842871944441195996534683, 9.254588465403944963934804538998

Graph of the $Z$-function along the critical line