Properties

Label 4-26e2-1.1-c2e2-0-0
Degree $4$
Conductor $676$
Sign $1$
Analytic cond. $0.501899$
Root an. cond. $0.841693$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 6·5-s + 4·7-s − 18·9-s − 12·10-s + 12·11-s + 8·14-s − 4·16-s − 36·18-s + 52·19-s − 12·20-s + 24·22-s + 18·25-s + 8·28-s − 96·29-s − 28·31-s − 8·32-s − 24·35-s − 36·36-s + 74·37-s + 104·38-s − 18·41-s + 24·44-s + 108·45-s + 84·47-s + 8·49-s + ⋯
L(s)  = 1  + 2-s + 1/2·4-s − 6/5·5-s + 4/7·7-s − 2·9-s − 6/5·10-s + 1.09·11-s + 4/7·14-s − 1/4·16-s − 2·18-s + 2.73·19-s − 3/5·20-s + 1.09·22-s + 0.719·25-s + 2/7·28-s − 3.31·29-s − 0.903·31-s − 1/4·32-s − 0.685·35-s − 36-s + 2·37-s + 2.73·38-s − 0.439·41-s + 6/11·44-s + 12/5·45-s + 1.78·47-s + 8/49·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(676\)    =    \(2^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.501899\)
Root analytic conductor: \(0.841693\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 676,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.176724877\)
\(L(\frac12)\) \(\approx\) \(1.176724877\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
13$C_2$ \( 1 + p^{2} T^{2} \)
good3$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
5$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 12 T + 72 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 542 T^{2} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 52 T + 1352 T^{2} - 52 p^{2} T^{3} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 482 T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 + 48 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 28 T + 392 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 - p T )^{2}( 1 + p^{2} T^{2} ) \)
41$C_2^2$ \( 1 + 18 T + 162 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} \)
43$C_2^2$ \( 1 - 2402 T^{2} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 84 T + 3528 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 108 T + 5832 T^{2} + 108 p^{2} T^{3} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 44 T + 968 T^{2} + 44 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 12 T + 72 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} \)
73$C_2^2$ \( 1 - 34 T + 578 T^{2} - 34 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2$ \( ( 1 + 108 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 156 T + 12168 T^{2} - 156 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 + 18 T + 162 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 94 T + 4418 T^{2} + 94 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.35449125857574115996580014573, −16.75075000834519460076311928876, −16.44712681731140219534814499481, −15.50405230739533236134390730981, −14.72775324191117174237516499556, −14.70294232960147805991572306730, −13.90300393988905715008427178251, −13.41921440535433854909104938686, −12.27189113398734597220008821566, −11.80008865402941539056754557416, −11.30287356242241452065891629106, −11.12671721156407251343402286710, −9.331167023136773648796773316813, −9.001743277187219891262692603270, −7.74904870654413418110336879363, −7.41588762584680208753980303552, −5.84602179849635622379922007877, −5.38569459593678042418592606655, −4.00527522059654166627719770843, −3.18651302706180249264320587061, 3.18651302706180249264320587061, 4.00527522059654166627719770843, 5.38569459593678042418592606655, 5.84602179849635622379922007877, 7.41588762584680208753980303552, 7.74904870654413418110336879363, 9.001743277187219891262692603270, 9.331167023136773648796773316813, 11.12671721156407251343402286710, 11.30287356242241452065891629106, 11.80008865402941539056754557416, 12.27189113398734597220008821566, 13.41921440535433854909104938686, 13.90300393988905715008427178251, 14.70294232960147805991572306730, 14.72775324191117174237516499556, 15.50405230739533236134390730981, 16.44712681731140219534814499481, 16.75075000834519460076311928876, 17.35449125857574115996580014573

Graph of the $Z$-function along the critical line