Properties

Label 4-2695275-1.1-c1e2-0-50
Degree $4$
Conductor $2695275$
Sign $1$
Analytic cond. $171.853$
Root an. cond. $3.62067$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 2·5-s + 11-s + 5·16-s + 6·20-s − 8·23-s + 3·25-s − 16·31-s − 4·37-s − 3·44-s + 24·47-s − 14·49-s + 4·53-s − 2·55-s − 8·59-s − 3·64-s − 32·67-s − 16·71-s − 10·80-s − 20·89-s + 24·92-s + 20·97-s − 9·100-s − 8·103-s + 12·113-s + 16·115-s + 121-s + ⋯
L(s)  = 1  − 3/2·4-s − 0.894·5-s + 0.301·11-s + 5/4·16-s + 1.34·20-s − 1.66·23-s + 3/5·25-s − 2.87·31-s − 0.657·37-s − 0.452·44-s + 3.50·47-s − 2·49-s + 0.549·53-s − 0.269·55-s − 1.04·59-s − 3/8·64-s − 3.90·67-s − 1.89·71-s − 1.11·80-s − 2.11·89-s + 2.50·92-s + 2.03·97-s − 0.899·100-s − 0.788·103-s + 1.12·113-s + 1.49·115-s + 1/11·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2695275 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2695275\)    =    \(3^{4} \cdot 5^{2} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(171.853\)
Root analytic conductor: \(3.62067\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2695275,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
11$C_1$ \( 1 - T \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.25611852136541238398716522907, −7.06776652987294055072227501878, −6.08693701335829428157980562583, −5.89992194836808220350577312387, −5.54640979880007283696239996782, −4.87806253960044967314702320131, −4.52659700416500112028212971426, −4.10497602187160877381582357369, −3.79000489498233733500749844862, −3.40349928139289108990558562724, −2.73199597836315214499399961863, −1.86919846930486895513918273600, −1.27797148118613320465803316120, 0, 0, 1.27797148118613320465803316120, 1.86919846930486895513918273600, 2.73199597836315214499399961863, 3.40349928139289108990558562724, 3.79000489498233733500749844862, 4.10497602187160877381582357369, 4.52659700416500112028212971426, 4.87806253960044967314702320131, 5.54640979880007283696239996782, 5.89992194836808220350577312387, 6.08693701335829428157980562583, 7.06776652987294055072227501878, 7.25611852136541238398716522907

Graph of the $Z$-function along the critical line