Properties

Label 4-260e2-1.1-c1e2-0-17
Degree $4$
Conductor $67600$
Sign $-1$
Analytic cond. $4.31023$
Root an. cond. $1.44087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·9-s − 4·13-s + 4·16-s − 6·17-s − 5·25-s − 4·36-s − 4·37-s − 6·41-s − 4·49-s + 8·52-s − 12·53-s + 20·61-s − 8·64-s + 12·68-s − 4·73-s − 5·81-s − 2·97-s + 10·100-s − 18·109-s + 6·113-s − 8·117-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 4-s + 2/3·9-s − 1.10·13-s + 16-s − 1.45·17-s − 25-s − 2/3·36-s − 0.657·37-s − 0.937·41-s − 4/7·49-s + 1.10·52-s − 1.64·53-s + 2.56·61-s − 64-s + 1.45·68-s − 0.468·73-s − 5/9·81-s − 0.203·97-s + 100-s − 1.72·109-s + 0.564·113-s − 0.739·117-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(67600\)    =    \(2^{4} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(4.31023\)
Root analytic conductor: \(1.44087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 67600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
5$C_2$ \( 1 + p T^{2} \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.633731455286696412672852497783, −9.147133856531130991326216125738, −8.688905757931164651798661190122, −8.089547260783665697484307616611, −7.70530762752800765860050302538, −6.94464094352742810301507715699, −6.66178913992086289237323057036, −5.82912663564127308789458423232, −5.13850060431603881752548486460, −4.75654311786951999774401545118, −4.14464388430762590588758823830, −3.59605324322709519789951114412, −2.57808318130574018327169053328, −1.66683035103486635794989350528, 0, 1.66683035103486635794989350528, 2.57808318130574018327169053328, 3.59605324322709519789951114412, 4.14464388430762590588758823830, 4.75654311786951999774401545118, 5.13850060431603881752548486460, 5.82912663564127308789458423232, 6.66178913992086289237323057036, 6.94464094352742810301507715699, 7.70530762752800765860050302538, 8.089547260783665697484307616611, 8.688905757931164651798661190122, 9.147133856531130991326216125738, 9.633731455286696412672852497783

Graph of the $Z$-function along the critical line