Properties

Label 4-260e2-1.1-c1e2-0-12
Degree $4$
Conductor $67600$
Sign $-1$
Analytic cond. $4.31023$
Root an. cond. $1.44087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 2·5-s + 7-s + 3·8-s − 2·9-s + 2·10-s + 3·11-s + 2·13-s − 14-s − 16-s − 5·17-s + 2·18-s − 2·19-s + 2·20-s − 3·22-s − 4·23-s − 25-s − 2·26-s − 28-s + 3·29-s − 5·31-s − 5·32-s + 5·34-s − 2·35-s + 2·36-s − 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.894·5-s + 0.377·7-s + 1.06·8-s − 2/3·9-s + 0.632·10-s + 0.904·11-s + 0.554·13-s − 0.267·14-s − 1/4·16-s − 1.21·17-s + 0.471·18-s − 0.458·19-s + 0.447·20-s − 0.639·22-s − 0.834·23-s − 1/5·25-s − 0.392·26-s − 0.188·28-s + 0.557·29-s − 0.898·31-s − 0.883·32-s + 0.857·34-s − 0.338·35-s + 1/3·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(67600\)    =    \(2^{4} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(4.31023\)
Root analytic conductor: \(1.44087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 67600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$D_{4}$ \( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 3 T + 20 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 5 T + 16 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T - 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_4$ \( 1 + 4 T + 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 3 T - 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 5 T + 60 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$D_{4}$ \( 1 - 3 T + 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + T - 48 T^{2} + p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 3 T + 16 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - T + 84 T^{2} - p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 11 T + 52 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 10 T + 78 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$D_{4}$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 2 T + 66 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 6 T - 62 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.7173496758, −14.1321721195, −13.8848663933, −13.4223994296, −12.8411449025, −12.3581711920, −11.8525894563, −11.4440519777, −11.0271626827, −10.5724447861, −10.2001391792, −9.31688312464, −8.92369977165, −8.82930535996, −8.16352157138, −7.71702164659, −7.27836350156, −6.55664170289, −5.98503167130, −5.35748332529, −4.41377393531, −4.18370295147, −3.62381527497, −2.46867912938, −1.42909995173, 0, 1.42909995173, 2.46867912938, 3.62381527497, 4.18370295147, 4.41377393531, 5.35748332529, 5.98503167130, 6.55664170289, 7.27836350156, 7.71702164659, 8.16352157138, 8.82930535996, 8.92369977165, 9.31688312464, 10.2001391792, 10.5724447861, 11.0271626827, 11.4440519777, 11.8525894563, 12.3581711920, 12.8411449025, 13.4223994296, 13.8848663933, 14.1321721195, 14.7173496758

Graph of the $Z$-function along the critical line