Properties

Label 4-2592e2-1.1-c1e2-0-37
Degree $4$
Conductor $6718464$
Sign $1$
Analytic cond. $428.375$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·13-s + 8·17-s − 7·25-s + 2·29-s − 16·37-s + 10·41-s − 11·49-s − 16·53-s − 14·61-s + 12·65-s − 24·73-s − 16·85-s − 8·89-s − 6·97-s − 26·101-s − 2·113-s − 19·121-s + 26·125-s + 127-s + 131-s + 137-s + 139-s − 4·145-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.66·13-s + 1.94·17-s − 7/5·25-s + 0.371·29-s − 2.63·37-s + 1.56·41-s − 1.57·49-s − 2.19·53-s − 1.79·61-s + 1.48·65-s − 2.80·73-s − 1.73·85-s − 0.847·89-s − 0.609·97-s − 2.58·101-s − 0.188·113-s − 1.72·121-s + 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6718464\)    =    \(2^{10} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(428.375\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6718464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 115 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 131 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 91 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.397031696841650725913479800939, −8.386977972874860395998300352468, −7.73171250544765767748752303615, −7.68295481383241906673174548290, −7.17607364241454461330902880889, −7.11900592248187017770817754217, −6.18361750459146836249569166071, −6.13060571298140938060085749426, −5.47678506461691529624909531985, −5.18091213208347521217114168871, −4.67401161869370202993917240883, −4.42419700266677387406096061366, −3.63664177750927853708552472010, −3.58986898833385397332573782654, −2.83227874127784074527249501031, −2.65908800261882956258027579143, −1.56974610630703964291935431360, −1.47329622182797242636351288162, 0, 0, 1.47329622182797242636351288162, 1.56974610630703964291935431360, 2.65908800261882956258027579143, 2.83227874127784074527249501031, 3.58986898833385397332573782654, 3.63664177750927853708552472010, 4.42419700266677387406096061366, 4.67401161869370202993917240883, 5.18091213208347521217114168871, 5.47678506461691529624909531985, 6.13060571298140938060085749426, 6.18361750459146836249569166071, 7.11900592248187017770817754217, 7.17607364241454461330902880889, 7.68295481383241906673174548290, 7.73171250544765767748752303615, 8.386977972874860395998300352468, 8.397031696841650725913479800939

Graph of the $Z$-function along the critical line