Properties

Label 4-2592e2-1.1-c1e2-0-33
Degree $4$
Conductor $6718464$
Sign $1$
Analytic cond. $428.375$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 6·13-s − 8·17-s + 5·25-s + 4·29-s + 2·37-s − 16·41-s − 14·49-s − 8·53-s + 10·61-s − 24·65-s − 6·73-s + 32·85-s − 16·89-s − 36·97-s − 40·101-s + 6·109-s − 16·113-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.78·5-s + 1.66·13-s − 1.94·17-s + 25-s + 0.742·29-s + 0.328·37-s − 2.49·41-s − 2·49-s − 1.09·53-s + 1.28·61-s − 2.97·65-s − 0.702·73-s + 3.47·85-s − 1.69·89-s − 3.65·97-s − 3.98·101-s + 0.574·109-s − 1.50·113-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6718464\)    =    \(2^{10} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(428.375\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6718464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 4 T + 11 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 4 T - 13 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 2 T - 33 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 6 T - 37 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 16 T + 167 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.549664320534920130452322868605, −8.379859570239159023629443917060, −7.940983534529901900071170250520, −7.82336450262115715202956535392, −6.98266470829251783263143876777, −6.79763238598130107172210796561, −6.55323386207423441565482066239, −6.19772515397853326248217132886, −5.40040882629185586874703660705, −5.21342169130791343157784205613, −4.47241613502914019846643175068, −4.32102035360810672281463146472, −3.74822689864830892315566360089, −3.69624076068292913409317372452, −2.90937050589233368890153506241, −2.63528933529652172863687198528, −1.58953134256885053149055926902, −1.35113073394202297598788621155, 0, 0, 1.35113073394202297598788621155, 1.58953134256885053149055926902, 2.63528933529652172863687198528, 2.90937050589233368890153506241, 3.69624076068292913409317372452, 3.74822689864830892315566360089, 4.32102035360810672281463146472, 4.47241613502914019846643175068, 5.21342169130791343157784205613, 5.40040882629185586874703660705, 6.19772515397853326248217132886, 6.55323386207423441565482066239, 6.79763238598130107172210796561, 6.98266470829251783263143876777, 7.82336450262115715202956535392, 7.940983534529901900071170250520, 8.379859570239159023629443917060, 8.549664320534920130452322868605

Graph of the $Z$-function along the critical line