Properties

Label 4-2592e2-1.1-c1e2-0-20
Degree $4$
Conductor $6718464$
Sign $1$
Analytic cond. $428.375$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·7-s + 6·11-s + 3·13-s + 4·17-s − 6·19-s + 6·23-s + 5·25-s − 8·29-s − 6·35-s + 14·37-s + 8·41-s + 12·43-s + 6·47-s + 7·49-s − 8·53-s + 12·55-s + 6·59-s + 61-s + 6·65-s + 3·67-s − 24·71-s − 30·73-s − 18·77-s − 9·79-s − 12·83-s + 8·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.13·7-s + 1.80·11-s + 0.832·13-s + 0.970·17-s − 1.37·19-s + 1.25·23-s + 25-s − 1.48·29-s − 1.01·35-s + 2.30·37-s + 1.24·41-s + 1.82·43-s + 0.875·47-s + 49-s − 1.09·53-s + 1.61·55-s + 0.781·59-s + 0.128·61-s + 0.744·65-s + 0.366·67-s − 2.84·71-s − 3.51·73-s − 2.05·77-s − 1.01·79-s − 1.31·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6718464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6718464\)    =    \(2^{10} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(428.375\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2592} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6718464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.579713803\)
\(L(\frac12)\) \(\approx\) \(3.579713803\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 3 T + 2 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 3 T - 4 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 8 T + 35 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 8 T + 23 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 12 T + 101 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 3 T - 58 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 9 T + 2 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 12 T + 61 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 9 T - 16 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.957441433068025365912137485551, −8.912334511026792479390428380972, −8.630043352120068715692558213735, −7.82516765172168799431434714022, −7.37944685186399670088148002264, −7.24735404946325294959699646199, −6.58419805179655744548290797624, −6.37872777780300278899923646324, −5.97790644986117367552756898875, −5.70758198712170289109689651721, −5.52604304953857037424625977893, −4.37543549012534078398022798193, −4.30405412261380532954171913107, −4.05403274976079971903102258303, −3.26641087248587843385597245707, −2.93374153362379176147440722165, −2.53215028383135827601980481347, −1.69826333074235063285462936672, −1.25642950466341870707212042484, −0.69331641873605864933057933350, 0.69331641873605864933057933350, 1.25642950466341870707212042484, 1.69826333074235063285462936672, 2.53215028383135827601980481347, 2.93374153362379176147440722165, 3.26641087248587843385597245707, 4.05403274976079971903102258303, 4.30405412261380532954171913107, 4.37543549012534078398022798193, 5.52604304953857037424625977893, 5.70758198712170289109689651721, 5.97790644986117367552756898875, 6.37872777780300278899923646324, 6.58419805179655744548290797624, 7.24735404946325294959699646199, 7.37944685186399670088148002264, 7.82516765172168799431434714022, 8.630043352120068715692558213735, 8.912334511026792479390428380972, 8.957441433068025365912137485551

Graph of the $Z$-function along the critical line