Properties

Label 4-2550e2-1.1-c1e2-0-49
Degree $4$
Conductor $6502500$
Sign $1$
Analytic cond. $414.605$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 9-s + 16-s − 8·19-s + 8·29-s − 12·31-s + 36-s − 20·41-s + 10·49-s − 24·59-s − 8·61-s − 64-s − 12·71-s + 8·76-s − 20·79-s + 81-s + 4·89-s + 28·101-s − 32·109-s − 8·116-s − 22·121-s + 12·124-s + 127-s + 131-s + 137-s + 139-s − 144-s + ⋯
L(s)  = 1  − 1/2·4-s − 1/3·9-s + 1/4·16-s − 1.83·19-s + 1.48·29-s − 2.15·31-s + 1/6·36-s − 3.12·41-s + 10/7·49-s − 3.12·59-s − 1.02·61-s − 1/8·64-s − 1.42·71-s + 0.917·76-s − 2.25·79-s + 1/9·81-s + 0.423·89-s + 2.78·101-s − 3.06·109-s − 0.742·116-s − 2·121-s + 1.07·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.0833·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6502500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(414.605\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6502500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
17$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 158 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.825097305600924684882846311536, −8.495745477700653924604162293949, −7.83130204114576913522229840721, −7.78367525758314996864358333183, −7.11323696493776343337880421612, −6.84691333396427191508576090187, −6.19858416419371220177785976867, −6.17815197663111214311890216504, −5.61740178378633776751199086807, −4.96176379420631685054632513019, −4.88585937677311203950539035886, −4.37309391978305386506785776826, −3.70998212691240318264645158834, −3.65469738875855982980400887343, −2.78147945032466614126753530538, −2.59039265610919749591723163296, −1.56278854575909790660249147422, −1.53706271652864137809279495870, 0, 0, 1.53706271652864137809279495870, 1.56278854575909790660249147422, 2.59039265610919749591723163296, 2.78147945032466614126753530538, 3.65469738875855982980400887343, 3.70998212691240318264645158834, 4.37309391978305386506785776826, 4.88585937677311203950539035886, 4.96176379420631685054632513019, 5.61740178378633776751199086807, 6.17815197663111214311890216504, 6.19858416419371220177785976867, 6.84691333396427191508576090187, 7.11323696493776343337880421612, 7.78367525758314996864358333183, 7.83130204114576913522229840721, 8.495745477700653924604162293949, 8.825097305600924684882846311536

Graph of the $Z$-function along the critical line