L(s) = 1 | + 3·5-s + 7-s − 3·9-s + 3·11-s − 13-s + 12·17-s + 8·19-s + 3·23-s + 5·25-s + 3·29-s − 5·31-s + 3·35-s − 4·37-s − 3·41-s − 43-s − 9·45-s + 9·47-s + 7·49-s + 12·53-s + 9·55-s − 3·59-s − 13·61-s − 3·63-s − 3·65-s − 7·67-s − 24·71-s − 20·73-s + ⋯ |
L(s) = 1 | + 1.34·5-s + 0.377·7-s − 9-s + 0.904·11-s − 0.277·13-s + 2.91·17-s + 1.83·19-s + 0.625·23-s + 25-s + 0.557·29-s − 0.898·31-s + 0.507·35-s − 0.657·37-s − 0.468·41-s − 0.152·43-s − 1.34·45-s + 1.31·47-s + 49-s + 1.64·53-s + 1.21·55-s − 0.390·59-s − 1.66·61-s − 0.377·63-s − 0.372·65-s − 0.855·67-s − 2.84·71-s − 2.34·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.904380311\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.904380311\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66373857453799648276687311273, −10.55464941196143113002808641854, −9.882443508847157671468397338947, −9.820237493180040822404382631213, −9.164206727321139778469551052702, −8.799860906056615216621763438136, −8.558602238031447478656016439292, −7.62746150735450034914185310860, −7.33085822679948347735005622646, −7.17224822521579406196943341796, −6.05664735282021213241486802974, −5.86423560611527013229170910278, −5.53086686710374051876759273318, −5.16798750198110613568592580835, −4.45125123198266736868986155425, −3.53068864789014727665592923665, −3.10315719359876178857067154391, −2.65666174448507744543953211222, −1.45898962843297050057826204341, −1.20494341501628432479218500582,
1.20494341501628432479218500582, 1.45898962843297050057826204341, 2.65666174448507744543953211222, 3.10315719359876178857067154391, 3.53068864789014727665592923665, 4.45125123198266736868986155425, 5.16798750198110613568592580835, 5.53086686710374051876759273318, 5.86423560611527013229170910278, 6.05664735282021213241486802974, 7.17224822521579406196943341796, 7.33085822679948347735005622646, 7.62746150735450034914185310860, 8.558602238031447478656016439292, 8.799860906056615216621763438136, 9.164206727321139778469551052702, 9.820237493180040822404382631213, 9.882443508847157671468397338947, 10.55464941196143113002808641854, 10.66373857453799648276687311273