L(s) = 1 | + 8·25-s − 14·49-s + 32·73-s + 16·97-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + ⋯ |
L(s) = 1 | + 8/5·25-s − 2·49-s + 3.74·73-s + 1.62·97-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 331776 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.741337176\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.741337176\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
good | 5 | $C_2^2$ | \( 1 - 8 T^{2} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 - 16 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 + 40 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 80 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 - 56 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 89 | $C_2^2$ | \( 1 - 160 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.824858079487109793020767351771, −8.226442656763433784273151124833, −7.956621595007610002608638537508, −7.37341733866238998564125202926, −6.79706760485777270642108653612, −6.52187187549933879291250780915, −6.00111709787899653584305608622, −5.28717675961025294516794230331, −4.91157970482620825805296412787, −4.47214322758092252074753463213, −3.63459484342576351166741904116, −3.24889396684625411083086343166, −2.51111484414636018400663468270, −1.77420175558827117179168744189, −0.77706818355732731600029283275,
0.77706818355732731600029283275, 1.77420175558827117179168744189, 2.51111484414636018400663468270, 3.24889396684625411083086343166, 3.63459484342576351166741904116, 4.47214322758092252074753463213, 4.91157970482620825805296412787, 5.28717675961025294516794230331, 6.00111709787899653584305608622, 6.52187187549933879291250780915, 6.79706760485777270642108653612, 7.37341733866238998564125202926, 7.956621595007610002608638537508, 8.226442656763433784273151124833, 8.824858079487109793020767351771