L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 12-s − 12·13-s + 16-s + 18-s − 12·23-s + 24-s + 6·25-s − 12·26-s + 27-s + 32-s + 36-s − 8·37-s − 12·39-s − 12·46-s − 8·47-s + 48-s − 10·49-s + 6·50-s − 12·52-s + 54-s − 24·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.288·12-s − 3.32·13-s + 1/4·16-s + 0.235·18-s − 2.50·23-s + 0.204·24-s + 6/5·25-s − 2.35·26-s + 0.192·27-s + 0.176·32-s + 1/6·36-s − 1.31·37-s − 1.92·39-s − 1.76·46-s − 1.16·47-s + 0.144·48-s − 1.42·49-s + 0.848·50-s − 1.66·52-s + 0.136·54-s − 3.12·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 - T \) |
| 3 | $C_1$ | \( 1 - T \) |
| 17 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 5 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.687931578430379170921838417106, −8.005132056516948045631634947890, −7.58460004774890445683046626123, −7.56738111269202357438702690211, −6.63257438834160544258861284685, −6.52498883063792512928187502617, −5.71929507199710618712172159386, −4.91997035368174263783342884746, −4.84625070630626219217033988858, −4.36159048011225245066599957337, −3.36779318987556938646346405293, −3.08824258991321588799800323044, −2.09209863939800055422786202913, −2.01050304782327789083256558357, 0,
2.01050304782327789083256558357, 2.09209863939800055422786202913, 3.08824258991321588799800323044, 3.36779318987556938646346405293, 4.36159048011225245066599957337, 4.84625070630626219217033988858, 4.91997035368174263783342884746, 5.71929507199710618712172159386, 6.52498883063792512928187502617, 6.63257438834160544258861284685, 7.56738111269202357438702690211, 7.58460004774890445683046626123, 8.005132056516948045631634947890, 8.687931578430379170921838417106