Properties

Label 4-249696-1.1-c1e2-0-5
Degree $4$
Conductor $249696$
Sign $-1$
Analytic cond. $15.9208$
Root an. cond. $1.99752$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 12-s − 12·13-s + 16-s + 18-s − 12·23-s + 24-s + 6·25-s − 12·26-s + 27-s + 32-s + 36-s − 8·37-s − 12·39-s − 12·46-s − 8·47-s + 48-s − 10·49-s + 6·50-s − 12·52-s + 54-s − 24·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.288·12-s − 3.32·13-s + 1/4·16-s + 0.235·18-s − 2.50·23-s + 0.204·24-s + 6/5·25-s − 2.35·26-s + 0.192·27-s + 0.176·32-s + 1/6·36-s − 1.31·37-s − 1.92·39-s − 1.76·46-s − 1.16·47-s + 0.144·48-s − 1.42·49-s + 0.848·50-s − 1.66·52-s + 0.136·54-s − 3.12·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(249696\)    =    \(2^{5} \cdot 3^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(15.9208\)
Root analytic conductor: \(1.99752\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 249696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( 1 - T \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.687931578430379170921838417106, −8.005132056516948045631634947890, −7.58460004774890445683046626123, −7.56738111269202357438702690211, −6.63257438834160544258861284685, −6.52498883063792512928187502617, −5.71929507199710618712172159386, −4.91997035368174263783342884746, −4.84625070630626219217033988858, −4.36159048011225245066599957337, −3.36779318987556938646346405293, −3.08824258991321588799800323044, −2.09209863939800055422786202913, −2.01050304782327789083256558357, 0, 2.01050304782327789083256558357, 2.09209863939800055422786202913, 3.08824258991321588799800323044, 3.36779318987556938646346405293, 4.36159048011225245066599957337, 4.84625070630626219217033988858, 4.91997035368174263783342884746, 5.71929507199710618712172159386, 6.52498883063792512928187502617, 6.63257438834160544258861284685, 7.56738111269202357438702690211, 7.58460004774890445683046626123, 8.005132056516948045631634947890, 8.687931578430379170921838417106

Graph of the $Z$-function along the critical line