Properties

Label 4-249696-1.1-c1e2-0-4
Degree $4$
Conductor $249696$
Sign $-1$
Analytic cond. $15.9208$
Root an. cond. $1.99752$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s − 8·11-s + 12-s − 4·13-s + 16-s + 18-s − 8·22-s + 24-s − 6·25-s − 4·26-s + 27-s + 32-s − 8·33-s + 36-s − 4·37-s − 4·39-s − 8·44-s + 48-s − 14·49-s − 6·50-s − 4·52-s + 54-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 2.41·11-s + 0.288·12-s − 1.10·13-s + 1/4·16-s + 0.235·18-s − 1.70·22-s + 0.204·24-s − 6/5·25-s − 0.784·26-s + 0.192·27-s + 0.176·32-s − 1.39·33-s + 1/6·36-s − 0.657·37-s − 0.640·39-s − 1.20·44-s + 0.144·48-s − 2·49-s − 0.848·50-s − 0.554·52-s + 0.136·54-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 249696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(249696\)    =    \(2^{5} \cdot 3^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(15.9208\)
Root analytic conductor: \(1.99752\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 249696,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( 1 - T \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.467961047217185243736660174457, −7.958882066985845549410362974675, −7.955859097314133791044966496465, −7.36440720073199929079936076774, −6.84651712139757264196140765804, −6.33169466753969442189844266176, −5.51457882926074302977186886250, −5.21730475246735557714050254853, −4.90718026477218821976639724467, −4.13875090005906653574798019221, −3.55640376879290048858690413154, −2.76309813409348720224135008444, −2.51899204061915291020295701141, −1.78111713369696792468537479439, 0, 1.78111713369696792468537479439, 2.51899204061915291020295701141, 2.76309813409348720224135008444, 3.55640376879290048858690413154, 4.13875090005906653574798019221, 4.90718026477218821976639724467, 5.21730475246735557714050254853, 5.51457882926074302977186886250, 6.33169466753969442189844266176, 6.84651712139757264196140765804, 7.36440720073199929079936076774, 7.955859097314133791044966496465, 7.958882066985845549410362974675, 8.467961047217185243736660174457

Graph of the $Z$-function along the critical line