Properties

Label 4-2475e2-1.1-c3e2-0-1
Degree $4$
Conductor $6125625$
Sign $1$
Analytic cond. $21324.6$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4-s + 16·7-s − 4·8-s − 22·11-s − 80·13-s − 32·14-s − 19·16-s − 164·17-s − 36·19-s + 44·22-s − 172·23-s + 160·26-s − 16·28-s + 108·29-s − 448·31-s + 202·32-s + 328·34-s − 108·37-s + 72·38-s + 212·41-s − 156·43-s + 22·44-s + 344·46-s + 20·47-s − 194·49-s + 80·52-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/8·4-s + 0.863·7-s − 0.176·8-s − 0.603·11-s − 1.70·13-s − 0.610·14-s − 0.296·16-s − 2.33·17-s − 0.434·19-s + 0.426·22-s − 1.55·23-s + 1.20·26-s − 0.107·28-s + 0.691·29-s − 2.59·31-s + 1.11·32-s + 1.65·34-s − 0.479·37-s + 0.307·38-s + 0.807·41-s − 0.553·43-s + 0.0753·44-s + 1.10·46-s + 0.0620·47-s − 0.565·49-s + 0.213·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6125625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6125625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6125625\)    =    \(3^{4} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(21324.6\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6125625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1222837311\)
\(L(\frac12)\) \(\approx\) \(0.1222837311\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 + p T + 5 T^{2} + p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 16 T + 450 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 80 T + 4542 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 164 T + 16118 T^{2} + 164 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 36 T + 3242 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 172 T + 30758 T^{2} + 172 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 108 T + 14062 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 448 T + 101646 T^{2} + 448 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 108 T + 103022 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 212 T + 148886 T^{2} - 212 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 156 T + 63530 T^{2} + 156 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 20 T + 202454 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 132 T - 117518 T^{2} - 132 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 688 T + 404246 T^{2} - 688 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 96 T + 402398 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 448 T + 455094 T^{2} + 448 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 132 T - 187322 T^{2} - 132 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 428 T + 808278 T^{2} + 428 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 424 T + 1031010 T^{2} - 424 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 720 T + 1262374 T^{2} + 720 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1056 T + 1317010 T^{2} - 1056 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 52 T - 413466 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.622110113012283536957003254808, −8.586709407531431339843037955841, −8.054270367349900859201845546046, −7.74169854110407557499197070317, −7.18869066002806614818232801798, −7.07979019644320818527655992847, −6.59959456943534649435863944904, −6.00793498418536416331862510805, −5.77344501637341867988289807565, −5.07449417651987644173873234832, −4.78627915260909653607843946762, −4.56148365162648233350493963957, −4.04355402912035458739786677112, −3.57618862223068357599214026297, −2.78660034132264826234656391960, −2.28244223881621095808931137545, −2.08119317437813433496229211913, −1.70356654271852401246880771492, −0.59963214944309582194366329681, −0.11756153249631857978140265156, 0.11756153249631857978140265156, 0.59963214944309582194366329681, 1.70356654271852401246880771492, 2.08119317437813433496229211913, 2.28244223881621095808931137545, 2.78660034132264826234656391960, 3.57618862223068357599214026297, 4.04355402912035458739786677112, 4.56148365162648233350493963957, 4.78627915260909653607843946762, 5.07449417651987644173873234832, 5.77344501637341867988289807565, 6.00793498418536416331862510805, 6.59959456943534649435863944904, 7.07979019644320818527655992847, 7.18869066002806614818232801798, 7.74169854110407557499197070317, 8.054270367349900859201845546046, 8.586709407531431339843037955841, 8.622110113012283536957003254808

Graph of the $Z$-function along the critical line