Properties

Label 4-2475e2-1.1-c3e2-0-0
Degree $4$
Conductor $6125625$
Sign $1$
Analytic cond. $21324.6$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 10·4-s − 20·7-s − 32·8-s + 22·11-s − 80·13-s − 40·14-s + 44·16-s − 124·17-s + 72·19-s + 44·22-s − 98·23-s − 160·26-s + 200·28-s − 144·29-s − 34·31-s + 248·32-s − 248·34-s − 54·37-s + 144·38-s − 536·41-s + 60·43-s − 220·44-s − 196·46-s − 272·47-s − 338·49-s + 800·52-s + ⋯
L(s)  = 1  + 0.707·2-s − 5/4·4-s − 1.07·7-s − 1.41·8-s + 0.603·11-s − 1.70·13-s − 0.763·14-s + 0.687·16-s − 1.76·17-s + 0.869·19-s + 0.426·22-s − 0.888·23-s − 1.20·26-s + 1.34·28-s − 0.922·29-s − 0.196·31-s + 1.37·32-s − 1.25·34-s − 0.239·37-s + 0.614·38-s − 2.04·41-s + 0.212·43-s − 0.753·44-s − 0.628·46-s − 0.844·47-s − 0.985·49-s + 2.13·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6125625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6125625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6125625\)    =    \(3^{4} \cdot 5^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(21324.6\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6125625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.09436412526\)
\(L(\frac12)\) \(\approx\) \(0.09436412526\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11$C_1$ \( ( 1 - p T )^{2} \)
good2$D_{4}$ \( 1 - p T + 7 p T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 20 T + 738 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 80 T + 4794 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 124 T + 13238 T^{2} + 124 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 72 T + 4214 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 98 T + 22847 T^{2} + 98 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 144 T + 44554 T^{2} + 144 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 34 T + 57519 T^{2} + 34 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 54 T + 101843 T^{2} + 54 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 536 T + 209618 T^{2} + 536 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 60 T + 159146 T^{2} - 60 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 272 T + 182942 T^{2} + 272 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 492 T + 348862 T^{2} + 492 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 634 T + 458975 T^{2} + 634 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 840 T + 528794 T^{2} - 840 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 754 T + 742455 T^{2} + 754 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 678 T + 813415 T^{2} - 678 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 400 T + 160962 T^{2} - 400 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 4 p T - 279966 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 468 T + 1155130 T^{2} - 468 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1842 T + 1935427 T^{2} - 1842 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 2194 T + 2966547 T^{2} + 2194 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845453733810344542760511320816, −8.546297645305899708440387882540, −7.84847147449465822319118412791, −7.81678909020413053207576090329, −7.08923631205891256304624426717, −6.76312471948227957871965258725, −6.36484366068527356967868924771, −6.17841101784755848011645259950, −5.34067623115730663760787883670, −5.25156796246307937555808921213, −4.71680353943433881963542093996, −4.57765227154553697146636426464, −3.85317271792736817146173714985, −3.70536313019727248385415343602, −3.15533778087021766259387709646, −2.80463247367345617896671556252, −1.98349637097142033597552798202, −1.71834942272120858071101274549, −0.59504197076450758566611580631, −0.085896833210309871970054469928, 0.085896833210309871970054469928, 0.59504197076450758566611580631, 1.71834942272120858071101274549, 1.98349637097142033597552798202, 2.80463247367345617896671556252, 3.15533778087021766259387709646, 3.70536313019727248385415343602, 3.85317271792736817146173714985, 4.57765227154553697146636426464, 4.71680353943433881963542093996, 5.25156796246307937555808921213, 5.34067623115730663760787883670, 6.17841101784755848011645259950, 6.36484366068527356967868924771, 6.76312471948227957871965258725, 7.08923631205891256304624426717, 7.81678909020413053207576090329, 7.84847147449465822319118412791, 8.546297645305899708440387882540, 8.845453733810344542760511320816

Graph of the $Z$-function along the critical line