Properties

Label 4-245e2-1.1-c1e2-0-7
Degree $4$
Conductor $60025$
Sign $1$
Analytic cond. $3.82724$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·4-s − 2·5-s + 5·9-s + 5·16-s + 12·19-s − 6·20-s − 25-s − 14·29-s − 4·31-s + 15·36-s − 10·41-s − 10·45-s + 20·59-s − 14·61-s + 3·64-s − 4·71-s + 36·76-s + 4·79-s − 10·80-s + 16·81-s + 18·89-s − 24·95-s − 3·100-s − 18·101-s − 10·109-s − 42·116-s − 22·121-s + ⋯
L(s)  = 1  + 3/2·4-s − 0.894·5-s + 5/3·9-s + 5/4·16-s + 2.75·19-s − 1.34·20-s − 1/5·25-s − 2.59·29-s − 0.718·31-s + 5/2·36-s − 1.56·41-s − 1.49·45-s + 2.60·59-s − 1.79·61-s + 3/8·64-s − 0.474·71-s + 4.12·76-s + 0.450·79-s − 1.11·80-s + 16/9·81-s + 1.90·89-s − 2.46·95-s − 0.299·100-s − 1.79·101-s − 0.957·109-s − 3.89·116-s − 2·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(60025\)    =    \(5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.82724\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 60025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.987838820\)
\(L(\frac12)\) \(\approx\) \(1.987838820\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 + 2 T + p T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.01571804133945693335686446554, −11.86674004305445302541064934117, −11.49802957873690594574763968636, −11.02037666658441009546729138770, −10.48053830642631756293273451889, −10.05806791301518125763005312962, −9.368509676824820831888843784883, −9.269489629824524181883533766445, −8.054107134123647440803206813455, −7.71201727717384931154224197875, −7.33008804031268611212863646820, −7.04964082746897053505966053312, −6.55840897780026521438484164195, −5.51763624678873988892869467209, −5.35919431520621974263615254112, −4.29928078103888284424559773903, −3.59848360718374381564888284336, −3.26321164020610104408044745777, −2.05315199560821415510065673884, −1.37132575934561351394632457756, 1.37132575934561351394632457756, 2.05315199560821415510065673884, 3.26321164020610104408044745777, 3.59848360718374381564888284336, 4.29928078103888284424559773903, 5.35919431520621974263615254112, 5.51763624678873988892869467209, 6.55840897780026521438484164195, 7.04964082746897053505966053312, 7.33008804031268611212863646820, 7.71201727717384931154224197875, 8.054107134123647440803206813455, 9.269489629824524181883533766445, 9.368509676824820831888843784883, 10.05806791301518125763005312962, 10.48053830642631756293273451889, 11.02037666658441009546729138770, 11.49802957873690594574763968636, 11.86674004305445302541064934117, 12.01571804133945693335686446554

Graph of the $Z$-function along the critical line