Properties

Label 4-2457-1.1-c1e2-0-1
Degree $4$
Conductor $2457$
Sign $1$
Analytic cond. $0.156660$
Root an. cond. $0.629129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s − 3·7-s + 9-s − 12-s + 3·13-s − 3·16-s − 8·19-s − 3·21-s + 2·25-s + 27-s + 3·28-s + 4·31-s − 36-s − 8·37-s + 3·39-s + 16·43-s − 3·48-s + 6·49-s − 3·52-s − 8·57-s + 16·61-s − 3·63-s + 7·64-s − 8·67-s + 4·73-s + 2·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 1/2·4-s − 1.13·7-s + 1/3·9-s − 0.288·12-s + 0.832·13-s − 3/4·16-s − 1.83·19-s − 0.654·21-s + 2/5·25-s + 0.192·27-s + 0.566·28-s + 0.718·31-s − 1/6·36-s − 1.31·37-s + 0.480·39-s + 2.43·43-s − 0.433·48-s + 6/7·49-s − 0.416·52-s − 1.05·57-s + 2.04·61-s − 0.377·63-s + 7/8·64-s − 0.977·67-s + 0.468·73-s + 0.230·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2457 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2457 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2457\)    =    \(3^{3} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(0.156660\)
Root analytic conductor: \(0.629129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2457,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6828945434\)
\(L(\frac12)\) \(\approx\) \(0.6828945434\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
7$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 4 T + p T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 2 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15462021230623033187473107990, −12.64296706297696533573800696145, −12.09416452733982837357248399870, −11.03875658285883297561866499921, −10.61127167204518793650702346210, −9.881797812406761228139013042516, −9.196397174384002639829606535855, −8.719229117878705718700334994389, −8.215896790738348096823310012783, −7.05004095104865533374700080458, −6.55535484914200555567754755910, −5.71774746168000328000796578581, −4.43184143650793104046710884591, −3.78357957995193524574068323677, −2.54663383021793368454863755150, 2.54663383021793368454863755150, 3.78357957995193524574068323677, 4.43184143650793104046710884591, 5.71774746168000328000796578581, 6.55535484914200555567754755910, 7.05004095104865533374700080458, 8.215896790738348096823310012783, 8.719229117878705718700334994389, 9.196397174384002639829606535855, 9.881797812406761228139013042516, 10.61127167204518793650702346210, 11.03875658285883297561866499921, 12.09416452733982837357248399870, 12.64296706297696533573800696145, 13.15462021230623033187473107990

Graph of the $Z$-function along the critical line