Properties

Label 4-2450e2-1.1-c3e2-0-8
Degree $4$
Conductor $6002500$
Sign $1$
Analytic cond. $20896.0$
Root an. cond. $12.0230$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 2·3-s + 12·4-s − 8·6-s + 32·8-s − 33·9-s − 26·11-s − 24·12-s + 102·13-s + 80·16-s − 186·17-s − 132·18-s + 36·19-s − 104·22-s + 44·23-s − 64·24-s + 408·26-s + 86·27-s − 46·29-s + 140·31-s + 192·32-s + 52·33-s − 744·34-s − 396·36-s − 132·37-s + 144·38-s − 204·39-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.384·3-s + 3/2·4-s − 0.544·6-s + 1.41·8-s − 1.22·9-s − 0.712·11-s − 0.577·12-s + 2.17·13-s + 5/4·16-s − 2.65·17-s − 1.72·18-s + 0.434·19-s − 1.00·22-s + 0.398·23-s − 0.544·24-s + 3.07·26-s + 0.612·27-s − 0.294·29-s + 0.811·31-s + 1.06·32-s + 0.274·33-s − 3.75·34-s − 1.83·36-s − 0.586·37-s + 0.614·38-s − 0.837·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6002500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(20896.0\)
Root analytic conductor: \(12.0230\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6002500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
5 \( 1 \)
7 \( 1 \)
good3$D_{4}$ \( 1 + 2 T + 37 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 26 T + 2703 T^{2} + 26 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 102 T + 6833 T^{2} - 102 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 186 T + 17897 T^{2} + 186 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 36 T + 13530 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 44 T + 192 p T^{2} - 44 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 46 T + 38939 T^{2} + 46 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 140 T + 38944 T^{2} - 140 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 132 T + 28044 T^{2} + 132 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 132 T + 100148 T^{2} + 132 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 324 T + 181386 T^{2} + 324 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 242 T + 215325 T^{2} + 242 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 208 T + 205512 T^{2} + 208 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 780 T + 529576 T^{2} - 780 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 216 T + 425298 T^{2} - 216 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 256 T + 62452 T^{2} - 256 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 692 T + 813066 T^{2} + 692 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 832 T + 948202 T^{2} + 832 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1962 T + 1889271 T^{2} + 1962 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1712 T + 1530198 T^{2} + 1712 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1960 T + 2217986 T^{2} - 1960 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 102 T + 453465 T^{2} + 102 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.378347750140306323389128623434, −8.227474044881204458212793720476, −7.37065464222000800673468057800, −7.10403830452236666712371571804, −6.59334145542790038635706141121, −6.41227455677833102279845012015, −5.88796091524754259117710439961, −5.81686537865356417131273252395, −5.08898573084149269776854451964, −5.02116411775709197716627097859, −4.36808299494908849116400702472, −4.09095780336853338158792904653, −3.43563272009156653785125088937, −3.25109375844706135978504904702, −2.55188912522043031361676748941, −2.37959797363454435325577153628, −1.54204357537045684875380911508, −1.18361913390535218408076586727, 0, 0, 1.18361913390535218408076586727, 1.54204357537045684875380911508, 2.37959797363454435325577153628, 2.55188912522043031361676748941, 3.25109375844706135978504904702, 3.43563272009156653785125088937, 4.09095780336853338158792904653, 4.36808299494908849116400702472, 5.02116411775709197716627097859, 5.08898573084149269776854451964, 5.81686537865356417131273252395, 5.88796091524754259117710439961, 6.41227455677833102279845012015, 6.59334145542790038635706141121, 7.10403830452236666712371571804, 7.37065464222000800673468057800, 8.227474044881204458212793720476, 8.378347750140306323389128623434

Graph of the $Z$-function along the critical line