Properties

Label 4-2450e2-1.1-c3e2-0-7
Degree $4$
Conductor $6002500$
Sign $1$
Analytic cond. $20896.0$
Root an. cond. $12.0230$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 12·4-s + 32·8-s − 26·9-s − 30·11-s + 80·16-s − 104·18-s − 120·22-s − 114·23-s − 142·29-s + 192·32-s − 312·36-s + 194·37-s − 198·43-s − 360·44-s − 456·46-s − 556·53-s − 568·58-s + 448·64-s − 170·67-s + 82·71-s − 832·72-s + 776·74-s − 1.57e3·79-s − 53·81-s − 792·86-s − 960·88-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s − 0.962·9-s − 0.822·11-s + 5/4·16-s − 1.36·18-s − 1.16·22-s − 1.03·23-s − 0.909·29-s + 1.06·32-s − 1.44·36-s + 0.861·37-s − 0.702·43-s − 1.23·44-s − 1.46·46-s − 1.44·53-s − 1.28·58-s + 7/8·64-s − 0.309·67-s + 0.137·71-s − 1.36·72-s + 1.21·74-s − 2.23·79-s − 0.0727·81-s − 0.993·86-s − 1.16·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6002500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6002500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(20896.0\)
Root analytic conductor: \(12.0230\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6002500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
5 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 26 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 15 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 4142 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 8818 T^{2} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 6550 T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 + 57 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 71 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 51490 T^{2} + p^{6} T^{4} \)
37$C_2$ \( ( 1 - 97 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 99510 T^{2} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 99 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 100014 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 278 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 400650 T^{2} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 406894 T^{2} + p^{6} T^{4} \)
67$C_2$ \( ( 1 + 85 T + p^{3} T^{2} )^{2} \)
71$C_2$ \( ( 1 - 41 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 221366 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 785 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 324774 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 + 345238 T^{2} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 1791046 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.246651094857675098012120993387, −7.912484591800457621259979940267, −7.53858534340446668549797115129, −7.33724918075770882733142543172, −6.56583834252285405526844080243, −6.41751831479788318700742980565, −5.90248144899013891813519710112, −5.66961259335374195653337802439, −5.25180434163459111149261388921, −4.89364266056276241434141180103, −4.37829935808144785655015068752, −4.06849479800946480144609500025, −3.36358732805281033288940483298, −3.27517305503174713911102835095, −2.47835223493653413725272708868, −2.43839537239734636010331265115, −1.68646483850403124218032289774, −1.15418014944547119267468908904, 0, 0, 1.15418014944547119267468908904, 1.68646483850403124218032289774, 2.43839537239734636010331265115, 2.47835223493653413725272708868, 3.27517305503174713911102835095, 3.36358732805281033288940483298, 4.06849479800946480144609500025, 4.37829935808144785655015068752, 4.89364266056276241434141180103, 5.25180434163459111149261388921, 5.66961259335374195653337802439, 5.90248144899013891813519710112, 6.41751831479788318700742980565, 6.56583834252285405526844080243, 7.33724918075770882733142543172, 7.53858534340446668549797115129, 7.912484591800457621259979940267, 8.246651094857675098012120993387

Graph of the $Z$-function along the critical line